25 research outputs found
Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation
BACKGROUND: Extracellular ATP may modulate airway responsiveness. Studies on ATP-induced contraction and [Ca(2+)](i )signalling in airway smooth muscle are rather controversial and discrepancies exist regarding both ATP effects and signalling pathways. We compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and investigated the implicated signalling pathways. METHODS: Isometric contraction was measured on rat trachea, EPB and IPB isolated rings and human IPB isolated rings. [Ca(2+)](i )was monitored fluorimetrically using indo 1 in freshly isolated and cultured tracheal myocytes. Statistical comparisons were done with ANOVA or Student's t tests for quantitative variables and χ(2 )tests for qualitative variables. Results were considered significant at P < 0.05. RESULTS: In rat airways, extracellular ATP (10(-6)–10(-3 )M) induced an epithelium-independent and concentration-dependent contraction, which amplitude increased from trachea to IPB. The response was transient and returned to baseline within minutes. Similar responses were obtained with the non-hydrolysable ATP analogous ATP-γ-S. Successive stimulations at 15 min-intervals decreased the contractile response. In human IPB, the contraction was similar to that of rat IPB but the time needed for the return to baseline was longer. In isolated myocytes, ATP induced a concentration-dependent [Ca(2+)](i )response. The contractile response was not reduced by thapsigargin and RB2, a P2Y receptor inhibitor, except in rat and human IPB. By contrast, removal of external Ca(2+), external Na(+ )and treatment with D600 decreased the ATP-induced response. The contraction induced by α-β-methylene ATP, a P2X agonist, was similar to that induced by ATP, except in IPB where it was lower. Indomethacin and H-89, a PKA inhibitor, delayed the return to baseline in extrapulmonary airways. CONCLUSION: Extracellular ATP induces a transient contractile response in human and rat airways, mainly due to P2X receptors and extracellular Ca(2+ )influx in addition with, in IPB, P2Y receptors stimulation and Ca(2+ )release from intracellular Ca(2+ )stores. Extracellular Ca(2+ )influx occurs through L-type voltage-dependent channels activated by external Na(+ )entrance through P2X receptors. The transience of the response cannot be attributed to ATP degradation but to purinoceptor desensitization and, in extrapulmonary airways, prostaglandin-dependent PKA activation
How Do Dual Long-Acting Bronchodilators Prevent Exacerbations of Chronic Obstructive Pulmonary Disease?
Decreasing the frequency and severity of exacerbations is one of the main goals of treatment for patients with chronic obstructive pulmonary disease. Several studies have documented that long-acting bronchodilators can reduce exacerbation rate and/or severity, and others have shown that combinations of long-acting β2-adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) provide greater reductions in exacerbation frequency than either their monocomponents or LABA/inhaled corticosteroid combinations in patients at low and high risk for these events. In this review, small groups of experts critically evaluated mechanisms potentially responsible for the increased benefit of LABA/LAMA combinations over single long-acting bronchodilators or LABA/inhaled corticosteroids in decreasing exacerbation. These included effects on lung hyperinflation and mechanical stress, inflammation, excessive mucus production with impaired mucociliary clearance, and symptom severity. The data assembled and analyzed by each group were reviewed by all authors and combined into this manuscript. Available clinical results support the possibility that effects of LABA/LAMA combinations on hyperinflation, mucociliary clearance, and symptom severity may all contribute to decreasing exacerbations. Although preclinical studies suggest LABAs and LAMAs have antiinflammatory effects, such effects have not been demonstrated yet in patients with chronic obstructive pulmonary disease
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Chronic obstructive pulmonary disease with mild airflow limitation: Current knowledge and proposal for future research – A consensus document from six scientific societies
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and morbidity worldwide, with high and growing prevalence. Its underdiagnosis and hence under-treatment is a general feature across all countries. This is particularly true for the mild or early stages of the disease, when symptoms do not yet interfere with daily living activities and both patients and doctors are likely to underestimate the presence of the disease. A diagnosis of COPD requires spirometry in subjects with a history of exposure to known risk factors and symptoms. Postbronchodilator forced expiratory volume in 1 second (FEV1)/forced vital capacity &lt;0.7 or less than the lower limit of normal confirms the presence of airflow limitation, the severity of which can be measured by FEV1% predicted: stage 1 defines COPD with mild airflow limitation, which means postbronchodilator FEV1 ≥80% predicted. In recent years, an elegant series of studies has shown that “exclusive reliance on spirometry, in patients with mild airflow limitation, may result in underestimation of clinically important physiologic impairment”. In fact, exercise tolerance, diffusing capacity, and gas exchange can be impaired in subjects at a mild stage of airflow limitation. Furthermore, growing evidence indicates that smokers without overt abnormal spirometry have respiratory symptoms and undergo therapy. This is an essential issue in COPD. In fact, on one hand, airflow limitation, even mild, can unduly limit the patient’s physical activity, with deleterious consequences on quality of life and even survival; on the other hand, particularly in younger subjects, mild airflow limitation might coincide with the early stage of the disease. Therefore, we thought that it was worthwhile to analyze further and discuss this stage of “mild COPD”. To this end, representatives of scientific societies from five European countries have met and developed this document to stimulate the attention of the scientific community on COPD with “mild” airflow limitation. The aim of this document is to highlight some key features of this important concept and help the practicing physician to understand better what is behind “mild” COPD. Future research should address two major issues: first, whether mild airflow limitation represents an early stage of COPD and what the mechanisms underlying the evolution to more severe stages of the disease are; and second, not far removed from the first, whether regular treatment should be considered for COPD patients with mild airflow limitation, either to prevent progression of the disease or to encourage and improve physical activity or both. © 2017 Rossi et al