652 research outputs found
Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication
AbstractE2, along with Erns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, 818CPIGWTGVIEC828, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP 818CPIGWTGVIEC828 indicates a membrane fusion activity and a critical role in virus replication
Constrained Gauge Fields from Spontaneous Lorentz Violation
Spontaneous Lorentz violation realized through a nonlinear vector field
constraint of the type ( is the proposed scale for
Lorentz violation) is shown to generate massless vector Goldstone bosons,
gauging the starting global internal symmetries in arbitrary relativistically
invariant theories. The gauge invariance appears in essence as a necessary
condition for these bosons not to be superfluously restricted in degrees of
freedom, apart from the constraint due to which the true vacuum in a theory is
chosen by the Lorentz violation. In the Abelian symmetry case the only possible
theory proves to be QED with a massless vector Goldstone boson naturally
associated with the photon, while the non-Abelian symmetry case results in a
conventional Yang-Mills theory. These theories, both Abelian and non-Abelian,
look essentially nonlinear and contain particular Lorentz (and ) violating
couplings when expressed in terms of the pure Goldstone vector modes. However,
they do not lead to physical Lorentz violation due to the simultaneously
generated gauge invariance.Comment: 15 pages, minor corrections, version to be published in Nucl. Phys.
Spontaneously Generated Tensor Field Gravity
An arbitrary local theory of a symmetric two-tensor field in
Minkowski spacetime is considered, in which the equations of motion are
required to be compatible with a nonlinear length-fixing constraint leading to spontaneous Lorentz invariance violation, SLIV
( is the proposed scale for SLIV). Allowing the parameters in the Lagrangian
to be adjusted so as to be consistent with this constraint, the theory turns
out to correspond to linearized general relativity in the weak field
approximation, while some of the massless tensor Goldstone modes appearing
through SLIV are naturally collected in the physical graviton. In essence the
underlying diffeomophism invariance emerges as a necessary condition for the
tensor field not to be superfluously restricted in degrees of
freedom, apart from the constraint due to which the true vacuum in the theory
is chosen by SLIV. The emergent theory appears essentially nonlinear, when
expressed in terms of the pure Goldstone tensor modes and contains a plethora
of new Lorentz and violating couplings. However, these couplings do not
lead to physical Lorentz violation once this tensor field gravity is properly
extended to conventional general relativity.Comment: 27 pages, published version, to appear in Nuclear Physics
Magnetic Fields in the Milky Way
This chapter presents a review of observational studies to determine the
magnetic field in the Milky Way, both in the disk and in the halo, focused on
recent developments and on magnetic fields in the diffuse interstellar medium.
I discuss some terminology which is confusingly or inconsistently used and try
to summarize current status of our knowledge on magnetic field configurations
and strengths in the Milky Way. Although many open questions still exist, more
and more conclusions can be drawn on the large-scale and small-scale components
of the Galactic magnetic field. The chapter is concluded with a brief outlook
to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media",
eds. E.M. de Gouveia Dal Pino and A. Lazaria
Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers
We have investigated the response of the acoustoelectric current driven by a
surface-acoustic wave through a quantum point contact in the closed-channel
regime. Under proper conditions, the current develops plateaus at integer
multiples of ef when the frequency f of the surface-acoustic wave or the gate
voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of
the current indicates that the interference of the surface-acoustic wave with
reflected waves matters. This is supported by the results obtained after a
second independent beam of surface-acoustic wave was added, traveling in
opposite direction. We have found that two sub-intervals can be distinguished
within the 1.1 MHz modulation period, where two different sets of plateaus
dominate the acoustoelectric-current versus gate-voltage characteristics. In
some cases, both types of quantized steps appeared simultaneously, though at
different current values, as if they were superposed on each other. Their
presence could result from two independent quantization mechanisms for the
acoustoelectric current. We point out that short potential barriers determining
the properties of our nominally long constrictions could lead to an additional
quantization mechanism, independent from those described in the standard model
of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low
Temp. Phys. in honour of Prof. F. Pobel
Effects of newer kidney protective agents on kidney endpoints provide implications for future clinical trials
Doubling of serum creatinine (equivalent to a 57% decline in the estimated glomerular filtration rate (eGFR)) is an accepted component of a composite kidney endpoint in clinical trials. Smaller declines in eGFR (40%, 50%) have been applied in several recently conducted clinical trials. Here, we assessed the effects of newer kidney protective agents on endpoints including smaller proportional declines in eGFR to compare relative event rates and the magnitude of observed treatment effects. We performed a post hoc analysis of 4401 patients in the CREDENCE, 4304 in the DAPA-CKD, 5734 in the FIDELIO-DKD, and 3668 in the SONAR trials, which assessed the effects of canagliflozin, dapagliflozin, finerenone and atrasentan in patients with chronic kidney disease. Effects of active therapies versus placebo on alternative composite kidney endpoints incorporating different eGFR decline thresholds (40%, 50%, or 57% eGFR reductions from baseline) with kidney failure or death due to kidney failure were compared. Cox-proportional hazards regression models were used to assess and compare treatment effects. During follow-up, event rates were higher for endpoints incorporating smaller versus larger eGFR decline thresholds. Compared to the treatment effects on kidney failure or death due to kidney failure, the magnitude of relative treatment effects was generally similar when considering composite endpoints incorporating smaller declines in eGFR. Hazard ratios for the four interventions ranged from 0.63 to 0.82 for the endpoint incorporating 40% eGFR decline and 0.59 to 0.76 for the endpoint incorporating 57% eGFR decline. Clinical trials incorporating a 40% eGFR decline in a composite endpoint would require approximately half the number of participants compared to a 57% eGFR decline with equivalent statistical power. Thus, in populations at high risk of CKD progression, the relative effects of newer kidney protective therapies appear generally similar across endpoints based on varying eGFR decline thresholds.</p
Quark initiated coherent diffractive production of muon pair and W boson at hadron colliders
The large transverse momentum muon pair and W boson productions in the quark
initiated coherent diffractive processes at hadron colliders are discussed
under the framework of the two-gluon exchange parametrization of the Pomeron
model. In this approach, the production cross sections are related to the
small-x off-diagonal gluon distribution and the large-x quark distribution in
the proton (antiproton). By approximating the off-diagonal gluon distribution
by the usual gluon distribution function, we estimate the production rates of
these processes at the Fermilab Tevatron.Comment: 11pages, 6 PS figures, to appear in PR
Diffractive light quark jet production at hadron colliders in the two-gluon exchange model
Massless quark and antiquark jet production at large transverse momentum in
the coherent diffractive processes at hadron colliders is calculated in the
two-gluon exchange parametrization of the Pomeron model. We use the helicity
amplitude method to calculate the cross section formula. We find that for the
light quark jet production the diffractive process is related to the
differential off-diagonal gluon distribution function in the proton. We
estimate the production rate for this process at the Fermilab Tevatron by
approximating the off-diagonal gluon distribution function by the usual
diagonal gluon distribution in the proton. And we find that the cross sections
for the diffractive light quark jet production and the charm quark jet
production are in the same order of magnitude. We also use the helicity
amplitude method to calculate the diffractive charm jet production at hadron
colliders, by which we reproduce the leading logarithmic approximation result
of this process we previously calculated.Comment: 15 pages, 4 PS figures, Revte
Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares
The extreme ultraviolet portion of the solar spectrum contains a wealth of
diagnostic tools for probing the lower solar atmosphere in response to an
injection of energy, particularly during the impulsive phase of solar flares.
These include temperature and density sensitive line ratios, Doppler shifted
emission lines and nonthermal broadening, abundance measurements, differential
emission measure profiles, and continuum temperatures and energetics, among
others. In this paper I shall review some of the advances made in recent years
using these techniques, focusing primarily on studies that have utilized data
from Hinode/EIS and SDO/EVE, while also providing some historical background
and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the
Topical Issue on Solar and Stellar Flare
- …