100 research outputs found

    Assessment of electrophoresis and electroosmosis in construction materials: effect of enhancing electrolytes and heavy metals contamination

    Full text link
    Electrokinetic effects are those that take place by application of an electric field to porous materials, with the zeta potential as the key parameter. Specifically, in the case of contaminated construction materials, the generation of an electroosmotic flux, with the corresponding dragging due to water transport, is a crucial mechanism to succeed in the treatment of decontamination. Therefore, it is of great interest trying to optimize the treatment by the addition of specific electrolytes enhancing the electrokinetic phenomena. Most of the data of zeta potential found in literature for construction materials are based in micro-electrophoresis measurements, which are quite far of the real conditions of application of the remediation treatments. In this paper, electrophoretic and electroosmotic experiments, with monolithic and powdered material respectively, have been carried out for mortar, brick and granite clean and contaminated with Cs, Sr, Co, Cd, Cu and Pb. The electrolytes tested have been distilled water (DW), Na2–EDTA, oxalic acid, acetic acid and citric acid. The zeta potential values have been determined through the two different techniques and the results compared and critically analysed

    A role for antibiotic biosynthesis monooxygenase domain proteins in fidelity control during aromatic polyketide biosynthesis

    Get PDF
    We report the formicapyridines which are structurally and biosynthetically related to the pentacyclic fasamycin and formicamycin aromatic polyketides but comprise a rare pyridine moiety. These new compounds are trace level metabolites formed by derailment of the major biosynthetic pathway. Inspired by evolutionary logic we show that rational mutation of a single gene in the biosynthetic gene cluster leads to a significant increase both in total formicapyridine production and their enrichment relative to the fasamycins/formicamycins. Our observations broaden the polyketide biosynthetic landscape and identify a non-catalytic role for ABM superfamily proteins in type II polyketide synthase assemblages for maintaining biosynthetic pathway fidelity

    Alpha-santalol, a chemopreventive agent against skin cancer, causes G2/M cell cycle arrest in both p53-mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action.</p> <p>Methods</p> <p>MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells.</p> <p>Results</p> <p>α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G<sub>2</sub>/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G<sub>2</sub>/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells.</p> <p>Conclusions</p> <p>This study for the first time identifies effects of α-santalol in G<sub>2</sub>/M phase arrest and describes detailed mechanisms of G<sub>2</sub>/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.</p

    Energy expenditure during overfeeding

    Get PDF
    The large inter-individual variation in weight gain during standardized overfeeding together with a weight gain that is often less than theoretically calculated from the energy excess suggest that there are differences between persons in the capacity to regulate energy expenditure and hence metabolic efficiency. Adaptive thermogenesis is defined as the regulated production of heat in response to environmental changes in temperature and diet, resulting in metabolic inefficiency. The question is whether adaptive thermogenesis can be identified in overfeeding experiments. From the numerous human overfeeding experiments we selected those studies that applied suitable protocols and measurement techniques. Five studies claimed to have found evidence for adaptive thermogenesis based on weight gains smaller than expected or unaccounted increases in thermogenesis above obligatory costs. Results from the other 11 studies suggest there is no adaptive thermogenesis as weight gains were proportional to the amount of overfeeding and the increased thermogenesis was associated with theoretical costs of an increased body size and a larger food intake. These results show that in humans, evidence for adaptive thermogenesis is still inconsistent. However, they do not rule out the existence, but emphasize that if present, adaptive changes in energy expenditure may be too small to measure considering measurement errors, errors in assumptions made and small (day-to-day) differences in physical activity. In addition, it is not clear in which component or components of total energy expenditure adaptive changes can occur and whether components can overlap due to measurement limitations

    Mating alters gene expression patterns in Drosophila melanogaster male heads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Behavior is a complex process resulting from the integration of genetic and environmental information. <it>Drosophila melanogaster </it>rely on multiple sensory modalities for reproductive success, and mating causes physiological changes in both sexes that affect reproductive output or behavior. Some of these effects are likely mediated by changes in gene expression. Courtship and mating alter female transcript profiles, but it is not known how mating affects male gene expression.</p> <p>Results</p> <p>We used <it>Drosophila </it>genome arrays to identify changes in gene expression profiles that occur in mated male heads. Forty-seven genes differed between mated and control heads 2 hrs post mating. Many mating-responsive genes are highly expressed in non-neural head tissues, including an adipose tissue called the fat body. One fat body-enriched gene, <it>female-specific independent of transformer </it>(<it>fit</it>), is a downstream target of the somatic sex-determination hierarchy, a genetic pathway that regulates <it>Drosophila</it> reproductive behaviors as well as expression of some fat-expressed genes; three other mating-responsive loci are also downstream components of this pathway. Another mating-responsive gene expressed in fat, <it>Juvenile hormone esterase </it>(<it>Jhe</it>), is necessary for robust male courtship behavior and mating success.</p> <p>Conclusions</p> <p>Our study demonstrates that mating causes changes in male head gene expression profiles and supports an increasing body of work implicating adipose signaling in behavior modulation. Since several mating-induced genes are sex-determination hierarchy target genes, additional mating-responsive loci may be downstream components of this pathway as well.</p

    Fat Oxidation, Fitness and Skeletal Muscle Expression of Oxidative/Lipid Metabolism Genes in South Asians: Implications for Insulin Resistance?

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4&#177;5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77&#177;2.02 vs 6.55&#177;2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46&#177;2.20 vs 6.00&#177;1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.&lt;/p&gt

    Carpal tunnel syndrome and the "double crush" hypothesis: a review and implications for chiropractic

    Get PDF
    Upton and McComas claimed that most patients with carpal tunnel syndrome not only have compressive lesions at the wrist, but also show evidence of damage to cervical nerve roots. This "double crush" hypothesis has gained some popularity among chiropractors because it seems to provide a rationale for adjusting the cervical spine in treating carpal tunnel syndrome. Here I examine use of the concept by chiropractors, summarize findings from the literature, and critique several studies aimed at supporting or refuting the hypothesis. Although the hypothesis also has been applied to nerve compressions other than those leading to carpal tunnel syndrome, this discussion mainly examines the original application – "double crush" involving both cervical spinal nerve roots and the carpal tunnel. I consider several categories: experiments to create double crush syndrome in animals, case reports, literature reviews, and alternatives to the original hypothesis. A significant percentage of patients with carpal tunnel syndrome also have neck pain or cervical nerve root compression, but the relationship has not been definitively explained. The original hypothesis remains controversial and is probably not valid, at least for sensory disturbances, in carpal tunnel syndrome. However, even if the original hypothesis is importantly flawed, evaluation of multiple sites still may be valuable. The chiropractic profession should develop theoretical models to relate cervical dysfunction to carpal tunnel syndrome, and might incorporate some alternatives to the original hypothesis. I intend this review as a starting point for practitioners, educators, and students wishing to advance chiropractic concepts in this area

    Transcultural Diabetes Nutrition Therapy Algorithm: The Asian Indian Application

    Get PDF
    India and other countries in Asia are experiencing rapidly escalating epidemics of type 2 diabetes (T2D) and cardiovascular disease. The dramatic rise in the prevalence of these illnesses has been attributed to rapid changes in demographic, socioeconomic, and nutritional factors. The rapid transition in dietary patterns in India—coupled with a sedentary lifestyle and specific socioeconomic pressures—has led to an increase in obesity and other diet-related noncommunicable diseases. Studies have shown that nutritional interventions significantly enhance metabolic control and weight loss. Current clinical practice guidelines (CPGs) are not portable to diverse cultures, constraining the applicability of this type of practical educational instrument. Therefore, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed and then customized per regional variations in India. The resultant India-specific tDNA reflects differences in epidemiologic, physiologic, and nutritional aspects of disease, anthropometric cutoff points, and lifestyle interventions unique to this region of the world. Specific features of this transculturalization process for India include characteristics of a transitional economy with a persistently high poverty rate in a majority of people; higher percentage of body fat and lower muscle mass for a given body mass index; higher rate of sedentary lifestyle; elements of the thrifty phenotype; impact of festivals and holidays on adherence with clinic appointments; and the role of a systems or holistic approach to the problem that must involve politics, policy, and government. This Asian Indian tDNA promises to help guide physicians in the management of prediabetes and T2D in India in a more structured, systematic, and effective way compared with previous methods and currently available CPGs

    Endocrine regulation of predator-induced phenotypic plasticity

    Get PDF
    Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator)

    Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system, Indonesia

    Get PDF
    Sponge species have been deemed high microbial abundance (HMA) or low microbial abundance (LMA) based on the composition and abundance of their microbial symbionts. In the present study, we evaluated the richness and composition of bacterial communities associated with one HMA sponge (Xestospongia testudinaria; Demospongiae: Haplosclerida: Petrosiidae), one LMA sponge (Stylissa carteri; Demospongiae: Scopalinida - Scopalinidae), and one sponge with a hitherto unknown microbial community (Aaptos suberitoides; Demospongiae: Suberitida: Suberitidae) inhabiting the Misool coral reef system in the West Papua province of Indonesia. The bacterial communities of these sponge species were also compared with seawater and sediment bacterial communities from the same coastal coral reef habitat. Using a 16S rRNA gene barcoded pyrosequencing approach, we showed that the most abundant phylum overall was Proteobacteria. The biotope (sponge species, sediment or seawater) explained almost 84% of the variation in bacterial composition with highly significant differences in composition among biotopes and a clear separation between bacterial communities from seawater and S. carteri; X. testudinaria and A. suberitoides and sediment. The Chloroflexi classes SAR202 and Anaerolineae were most abundant in A. suberitoides and X. testudinaria and both of these species shared several OTUs that were largely absent in the remaining biotopes. This suggests that A. suberitoides is a HMA sponge. Although similar, the bacterial communities of S. carteri and seawater were compositionally distinct. These results confirm compositional differences between sponge and non-sponge biotopes and between HMA and LMA sponges.publishe
    corecore