17 research outputs found

    Characterizing the Near-infrared Spectra of Flares from TRAPPIST-1 During JWST Transit Spectroscopy Observations

    Full text link
    We present the first analysis of JWST near-infrared spectroscopy of stellar flares from TRAPPIST-1 during transits of rocky exoplanets. Four flares were observed from 0.6--2.8 μ\mum with NIRISS and 0.6--3.5 μ\mum with NIRSpec during transits of TRAPPIST-1b, f, and g. We discover Pα\alpha and Brβ\beta line emission and characterize flare continuum at wavelengths from 1--3.5 μ\mum for the first time. Observed lines include Hα\alpha, Pα\alpha-Pϵ\epsilon, Brβ\beta, He I λ\lambda0.7062μ\mum, two Ca II infrared triplet (IRT) lines, and the He I IRT. We observe a reversed Paschen decrement from Pα\alpha-Pγ\gamma alongside changes in the light curve shapes of these lines. The continuum of all four flares is well-described by blackbody emission with an effective temperature below 5300 K, lower than temperatures typically observed at optical wavelengths. The 0.6--1 μ\mum spectra were convolved with the TESS response, enabling us to measure the flare rate of TRAPPIST-1 in the TESS bandpass. We find flares of 1030^{30} erg large enough to impact transit spectra occur at a rate of 3.6+2.1−1.3\substack{+2.1 \\ -1.3} flare d−1^{-1}, ∼\sim10×\times higher than previous predictions from K2. We measure the amount of flare contamination at 2 μ\mum for the TRAPPIST-1b and f transits to be 500±\pm450 and 2100±\pm400 ppm, respectively. We find up to 80% of flare contamination can be removed, with mitigation most effective from 1.0--2.4 μ\mum. These results suggest transits affected by flares may still be useful for atmospheric characterization efforts.Comment: 29 pages, 17 figures, 3 tables, accepted to The Astrophysical Journa

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    Full text link
    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution, and high precision that, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0 - 4.0 μ\mum, exhibit minimal systematics, and reveal well-defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous H2_2O in the atmosphere and place an upper limit on the abundance of CH4_4. The otherwise prominent CO2_2 feature at 2.8 μ\mum is largely masked by H2_2O. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100×\times solar (i.e., an enrichment of elements heavier than helium relative to the Sun) and a sub-stellar carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation or disequilibrium processes in the upper atmosphere.Comment: 35 pages, 13 figures, 3 tables, Nature, accepte

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    Characterizing the Near-infrared Spectra of Flares from TRAPPIST-1 during JWST Transit Spectroscopy Observations

    No full text
    We present the first analysis of JWST near-infrared spectroscopy of stellar flares from TRAPPIST-1 during transits of rocky exoplanets. Four flares were observed from 0.6–2.8 μ m with the Near Infrared Imager and Slitless Spectrograph and 0.6–3.5 μ m with the Near Infrared Spectrograph during transits of TRAPPIST-1b, f, and g. We discover P α and Br β line emission and characterize flare continuum at wavelengths from 1–3.5 μ m for the first time. Observed lines include H α , P α –P ϵ , Br β , He i λ 0.7062 μ m, two Ca ii infrared triplet (IRT) lines, and the He i IRT. We observe a reversed Paschen decrement from P α –P γ alongside changes in the light-curve shapes of these lines. The continuum of all four flares is well described by blackbody emission with an effective temperature below 5300 K, lower than the temperatures typically observed at optical wavelengths. The 0.6–1 μ m spectra were convolved with the Transiting Exoplanet Survey Satellite (TESS) response, enabling us to measure the flare rate of TRAPPIST-1 in the TESS bandpass. We find flares of 10 ^30 erg, large enough to impact transit spectra occur at a rate of 3.6−1.3+2.1{3.6}_{-1.3}^{+2.1} flare day ^−1 , ∼10× higher than previous predictions from K2. We measure the amount of flare contamination at 2 μ m for the TRAPPIST-1b and f transits to be 500 ± 450 and 2100 ± 400 ppm, respectively. We find up to 80% of flare contamination can be removed, with mitigation most effective from 1.0–2.4 μ m. These results suggest transits affected by flares may still be useful for atmospheric characterization efforts

    Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM

    No full text
    International audienceTransmission spectroscopy of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations’ relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species—in particular the primary carbon-bearing molecules. Here we report a broad-wavelength 0.5–5.5 µm atmospheric transmission spectrum of WASP-39b, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec’s PRISM mode as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10–12. We robustly detect several chemical species at high significance, including Na (19σ), H2_2O (33σ), CO2_2 (28σ) and CO (7σ). The non-detection of CH4_4, combined with a strong CO2_2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2_2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST’s sensitivity to a rich diversity of exoplanet compositions and chemical processes
    corecore