37 research outputs found

    Altered motivation states for physical activity and ‘appetite’ for movement as compensatory mechanisms limiting the efficacy of exercise training for weight loss

    Get PDF
    Weight loss is a major motive for engaging in exercise, despite substantial evidence that exercise training results in compensatory responses that inhibit significant weight loss. According to the Laws of Thermodynamics and the CICO (Calories in, Calories out) model, increased exercise-induced energy expenditure (EE), in the absence of any compensatory increase in energy intake, should result in an energy deficit leading to reductions of body mass. However, the expected negative energy balance is met with both volitional and non-volitional (metabolic and behavioral) compensatory responses. A commonly reported compensatory response to exercise is increased food intake (i.e., Calories in) due to increased hunger, increased desire for certain foods, and/or changes in health beliefs. On the other side of the CICO model, exercise training can instigate compensatory reductions in EE that resist the maintenance of an energy deficit. This may be due to decreases in non-exercise activity thermogenesis (NEAT), increases in sedentary behavior, or alterations in sleep. Related to this EE compensation, the motivational states associated with the desire to be active tend to be overlooked when considering compensatory changes in non-exercise activity. For example, exercise-induced alterations in the wanting of physical activity could be a mechanism promoting compensatory reductions in EE. Thus, one’s desires, urges or cravings for movement–also known as “motivation states” or “appetence for activity”-are thought to be proximal instigators of movement. Motivation states for activity may be influenced by genetic, metabolic, and psychological drives for activity (and inactivity), and such states are susceptible to fatigue-or reward-induced responses, which may account for reductions in NEAT in response to exercise training. Further, although the current data are limited, recent investigations have demonstrated that motivation states for physical activity are dampened by exercise and increase after periods of sedentarism. Collectively, this evidence points to additional compensatory mechanisms, associated with motivational states, by which impositions in exercise-induced changes in energy balance may be met with resistance, thus resulting in attenuated weight loss

    Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G

    Get PDF
    Background: The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised. Methodology/Principal Findings: We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy. Conclusions/Significance: We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality

    Bringing a Time–Depth Perspective to Collective Animal Behaviour

    Get PDF
    The field of collective animal behaviour examines how relatively simple, local interactions between individuals in groups combine to produce global-level outcomes. Existing mathematical models and empirical work have identified candidate mechanisms for numerous collective phenomena but have typically focused on one-off or short-term performance. We argue that feedback between collective performance and learning – giving the former the capacity to become an adaptive, and potentially cumulative, process – is a currently poorly explored but crucial mechanism in understanding collective systems. We synthesise material ranging from swarm intelligence in social insects through collective movements in vertebrates to collective decision making in animal and human groups, to propose avenues for future research to identify the potential for changes in these systems to accumulate over time

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Conflict Transformation: Relinquishing or Maintaining Social Identity among Former Loyalist Combatants in Northern Ireland

    No full text
    This study explored the accounts of former loyalist combatants now involved in conflict transformation, preventing violent extremism and peacebuilding work. To understand how former loyalist combatants negotiate their dramatic change in context and function, we analysed accounts of peacebuilding through thematic analysis. The themes demonstrated that conducting conflict transformation is expressively linked to former combatant identity. The themes also demonstrate that former combatants construct identity continuity by viewing their current transformative actions as an evolution of their militant activity during the Troubles. The paper concludes on the implications of these identity maintenance strategies for former combatants and, more widely, what implications this has for other militants transitioning from conflict or extremism towards peace

    Planning a Sterile Technics Laboratory

    No full text

    Redetermination of junitoite, CaZn 2

    No full text

    Voluntary basinwide water management: South Platte River Basin, Colorado: report

    No full text
    May 1987.Bibliography: pages 132-148.Financed in part by the U.S. Dept. of the Interior, as authorized by the Water Research and Development Act of 1978, under grant no. G.831, project 37062
    corecore