15 research outputs found

    Trans-sialidase from Trypanosoma cruzi enhances the adhesion properties and fibronectin-driven migration of thymocytes

    Get PDF
    In experimental Trypanosoma cruzi infections, severe thymic atrophy leads to release of activated CD4+CD8+ double-positive (DP) T cells to the periphery. In humans, activated DP T cells are found in the blood in association with severe cardiac forms of human chronic Chagas disease. The mechanisms underlying the premature thymocyte release during the chagasic thymic atrophy remain elusive. We tested whether the migratory properties of intrathymic thymocytes are modulated by the parasite trans-sialidase (TS). We found that TS affected the dynamics of thymocytes undergoing intrathymic maturation, and these changes were accompanied by an increase in the number of recent DP thymic emigrants in the peripheral lymphoid organs. We demonstrated that increased percentages of blood DP T cell subsets were associated with augmented antibody titers against TS in chagasic patients with chronic cardiomyopathy. In vitro studies showed that TS was able to activate the MAPK pathway and actin filament mobilization in thymocytes. These effects were correlated with its ability to modulate the adhesion of thymocytes to thymic epithelial cells and their migration toward extracellular matrix. These findings point to effects of TS that could influence the escape of immature thymocytes in Chagas disease.Fil: Nardy, Ana Flávia F.R.. Universidade Federal do Rio de Janeiro; BrasilFil: Silva Filho, Joao Luiz da. Universidade Federal do Rio de Janeiro; BrasilFil: Perez, Ana Rosa. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Meis, Juliana de. Instituto Oswaldo Cruz; BrasilFil: Farias de Oliveira, Désio Aurélio. Instituto Oswaldo Cruz; BrasilFil: Penha, Luciana. Universidade Federal do Rio de Janeiro; BrasilFil: Oliveira, Isadora de Araújo. Universidade Federal do Rio de Janeiro; BrasilFil: Dias, Wagner B.. Universidade Federal do Rio de Janeiro; BrasilFil: Todeschini, Adriane. Universidade Federal do Rio de Janeiro; BrasilFil: Freire de Lima, Célio Geraldo. Universidade Federal do Rio de Janeiro; BrasilFil: Bellio, Maria. Universidade Federal do Rio de Janeiro; BrasilFil: Caruso Neves, Celso. Universidade Federal do Rio de Janeiro; BrasilFil: Pinheiro, Ana Acácia. Universidade Federal do Rio de Janeiro; BrasilFil: Takiya, Christina Maeda. Universidade Federal do Rio de Janeiro; BrasilFil: Bottasso, Oscar Adelmo. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Savino, Wilson. Instituto Oswaldo Cruz; BrasilFil: Morrot, Alexandre. Universidade Federal do Rio de Janeiro; Brasi

    A list of land plants of Parque Nacional do CaparaĂł, Brazil, highlights the presence of sampling gaps within this protected area

    Get PDF
    Brazilian protected areas are essential for plant conservation in the Atlantic Forest domain, one of the 36 global biodiversity hotspots. A major challenge for improving conservation actions is to know the plant richness, protected by these areas. Online databases offer an accessible way to build plant species lists and to provide relevant information about biodiversity. A list of land plants of “Parque Nacional do Caparaó” (PNC) was previously built using online databases and published on the website "Catálogo de Plantas das Unidades de Conservação do Brasil." Here, we provide and discuss additional information about plant species richness, endemism and conservation in the PNC that could not be included in the List. We documented 1,791 species of land plants as occurring in PNC, of which 63 are cited as threatened (CR, EN or VU) by the Brazilian National Red List, seven as data deficient (DD) and five as priorities for conservation. Fifity-one species were possible new ocurrences for ES and MG states

    Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions

    Get PDF
    Parasites of the genus Leishmania are the causative agents of leishmaniasis, a group of diseases that range in manifestations from skin lesions to fatal visceral disease. The life cycle of Leishmania parasites is split between its insect vector and its mammalian host, where it resides primarily inside of macrophages. Once intracellular, Leishmania parasites must evade or deactivate the host's innate and adaptive immune responses in order to survive and replicate. We performed transcriptome profiling using RNA-seq to simultaneously identify global changes in murine macrophage and L. major gene expression as the parasite entered and persisted within murine macrophages during the first 72 h of an infection. Differential gene expression, pathway, and gene ontology analyses enabled us to identify modulations in host and parasite responses during an infection. The most substantial and dynamic gene expression responses by both macrophage and parasite were observed during early infection. Murine genes related to both pro- and anti-inflammatory immune responses and glycolysis were substantially upregulated and genes related to lipid metabolism, biogenesis, and Fc gamma receptor-mediated phagocytosis were downregulated. Upregulated parasite genes included those aimed at mitigating the effects of an oxidative response by the host immune system while downregulated genes were related to translation, cell signaling, fatty acid biosynthesis, and flagellum structure. The gene expression patterns identified in this work yield signatures that characterize multiple developmental stages of L. major parasites and the coordinated response of Leishmania-infected macrophages in the real-time setting of a dual biological system. This comprehensive dataset offers a clearer and more sensitive picture of the interplay between host and parasite during intracellular infection, providing additional insights into how pathogens are able to evade host defenses and modulate the biological functions of the cell in order to survive in the mammalian environment.https://doi.org/10.1186/s12864-015-2237-

    Immune Evasion Strategies of Trypanosoma cruzi

    No full text
    Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4+ T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease

    Multiple Myeloma and its role in immunosupression

    No full text
    Multiple Myeloma (MM) is a plasma cell malignancy characterized by immunosuppression and increase of susceptibility to several infections, which considerably decreases the survival rate of patients. The immunosuppression of anti-tumor protective responses is a common characteristic to a variety of neoplasias, and it involves the immune responses subversion, especially those elicited by dendritic cells (DCs). The development of an immunosuppressive niche by the tumor is suggested to represent an important mean to induce DCs differentiation towards a tolerogenic profile. Tolerogenic DCs are known to induce CD8+ regulatory T cells, a subset of CD8+ T cells which has recently received more attention since its original discovery decades ago. These events started to be unveiled and may act as a key mechanism responsible for the impaired immune functions seen in MM. In this editorial, we focus on the compromised anti-tumor immune responses against MM on the basis of DCs activity modulation and their role in CD8+ Treg induction

    The Sweet Side of Immune Evasion: Role of Glycans in the Mechanisms of Cancer Progression

    Get PDF
    Glycans are part of the essential components of a cell. These compounds play a fundamental role in several physiopathological processes including cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumor cell invasion and metastasis development. Glycans are also able to exert control over the changes in tumor immunogenecity, interfering with tumor editing events and leading to immune resistant cancer cells. The involvement of glycans in cancer progression are related to glycosylation alterations. Understanding such changes is, therefore, extremely useful to set the stage for their use as biomarkers, improving the diagnostics and therapeutic strategies. Herein, we discuss the basis of how modifications in glycosylation patterns may contribute to cancer genesis and progression as well as their importance in oncology field

    Multiple Myeloma Cells Express Key Immunoregulatory Cytokines and Modulate the Monocyte Migratory Response

    No full text
    Multiple myeloma (MM) is a plasma cell disorder that still remains incurable. The immune dysfunction of the host is a striking characteristic of MM, leading to tumor growth and reducing the survival rate of patients. Monocytes are precursors of conventional dendritic cells (DCs), a major player in the immunity mechanisms driving protective T cell responses against tumor. Herein, we report that human MM RPMI 8226 cell line shows a pronounced chemoattractant activity for monocytes and also expresses enhanced levels of the leukocyte chemotactic cytokines CXCL12, CCL5, MIP-1β, and CXCL10 in association with elevated levels of both key immunoregulatory interleukins such as IL-4 and IL-10. This cytokine profile was observed together with reduced expression of IFN-γ by MM RPMI 8226 cell line, a determinant interleukin involved in the acquisition of cellular-mediated protective responses against tumor cells. We further demonstrate that MM RPMI 8226 cell line expresses elevated levels of soluble form of the intercellular adhesion molecule-1 known to inhibit antitumoral T cell responses. This attractive modulation of immune responses by MM cells might provide a means to impair early antitumor responses during the establishment of cytokine-mediated immunosuppressive tumor niche
    corecore