15 research outputs found

    Recrystallisation rims in zircon (Valle d'Arbedo, Switzerland): an integrated cathodoluminescence, LA-ICP-MS, SHRIMP, and TEM study

    No full text
    Recrystallization rims are a common feature of zircon crystals that underwent metamorphism. We present a microstructural and microchemical study of partially recrystallized zircon grains collected in polymetamorphic migmatites (Valle d'Arbedo, Ticino, Switzerland). The rims are bright in cathodo-luminescence (CL), with sharp and convex contacts characterized by inward-penetrating embayments transgressing igneous zircon cores. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and transmission electron microscopy (TEM) imaging indicate that the rims are chemically and microstructurally different from the cores. The rims are strongly depleted in REE, with concentrations up to two orders of magnitude lower than in the cores, indicating a significant loss of REE during zircon recrystallization. Enrichment in non-formula elements, such as Ca, has not been observed in the rims. The microstructure of zircon cores shows a dappled intensity at and below the 100 nm scale, possibly due to radiation damage. Other defects such as pores and dislocations are absent in the core except at healed cracks. Zircon rims are mostly dapple-free, but contain nanoscale pores and strain centers, interpreted as fluid inclusions and chemical residues, respectively. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages show that the recrystallization of the rims took place >200 Ma ago when the parent igneous zircon was not metamict. The chemical composition and the low-Ti content of the rims indicate that they form at sub-solidus temperatures (550-650 degrees C). Recrystallization rims in Valle d'Arbedo zircon are interpreted as the result of the migration of chemical reaction fronts in which fluid triggered in situ and contemporaneous interface-coupled dissolution-reprecipitation mechanisms. This study indicates that strong lattice strain resulting from the incorporation of a large amount of impurities and structural defects is not a necessary condition for zircon to recrystallize. Our observations suggest that the early formation of recrystallization rims played a major role in preserving zircon from the more recent Alpine metamorphic overprint

    Reading-writing connections: the importance of interactive discourse

    Get PDF
    This paper analyses the medium-term effects of a carbon tax on growth and CO2 emissions in Ireland, a small open economy. We find that a double dividend exists if the carbon tax revenue is recycled through reduced income taxes. If the revenue is recycled by giving a lump-sum transfer to households, a double dividend is unlikely. We also determine that a greater incidence of the carbon tax falls on capital than on labour. When combined with a decrease in income tax, there is a clear shift of the tax burden from labour to capital. Finally, most of the effect on the economy is due to changes in the competitiveness of the manufacturing and market services sectors. These results hold even if we allow changes in energy prices to have an enhanced (detrimental) effect on Ireland’s competitiveness

    Eight-phase alkali feldspars: low-temperature cryptoperthite, peristerite and multiple replacement reactions in the Klokken intrusion

    No full text
    Eight feldspar phases have been distinguished within individual alkali feldspar primocrysts in laminated syenite members of the layered syenite series of the Klokken intrusion. The processes leading to the formation of the first four phases have been described previously. The feldspars crystallized as homogeneous sodian sanidine and exsolved by spinodal decomposition, between 750 and 600 °C, depending on bulk composition, to give fully coherent, strain-controlled braid cryptoperthites with sub-μm periodicities. Below ~500 °C, in the microcline field, these underwent a process of partial mutual replacement in a deuteric fluid, producing coarse (up to mm scale), turbid, incoherent patch perthites. We here describe exsolution and replacement processes that occurred after patch perthite formation. Both Or- and Ab-rich patches underwent a new phase of coherent exsolution by volume diffusion. Or-rich patches began to exsolve albite lamellae by coherent nucleation in the range 460–340 °C, depending on patch composition, leading to film perthite with ≤1 μm periodicities. Below ~300 °C, misfit dislocation loops formed, which were subsequently enlarged to nanotunnels. Ab-rich patches (bulk composition ~Ab91Or1An8), in one sample, exsolved giving peristerite, with one strong modulation with a periodicity of ~17 nm and a pervasive tweed microtexture. The Ab-rich patches formed with metastable disorder below the peristerite solvus and intersected the peristerite conditional spinodal at ~450 °C. This is the first time peristerite has been imaged using TEM within any perthite, and the first time peristerite has been found in a relatively rapidly cooled geological environment. The lamellar periodicities of film perthite and peristerite are consistent with experimentally determined diffusion coefficients and a calculated cooling history of the intrusion. All the preceding textures were in places affected by a phase of replacement correlating with regions of extreme optical turbidity. We term this material ultra porous late feldspar (UPLF). It is composed predominantly of regions of microporous very Or-rich feldspar (mean Ab2.5Or97.4An0.1) associated with very pure porous albite (Ab97.0Or1.6An1.4) implying replacement below 170–90 °C, depending on degree of order. In TEM, UPLF has complex, irregular diffraction contrast similar to that previously associated with low-temperature albitization and diagenetic overgrowths. Replacement by UPLF seems to have been piecemeal in character. Ghost-like textural pseudomorphs of both braid and film parents occur. Formation of patch perthite, film perthite and peristerite occurred 104–105 year after emplacement, but there are no microtextural constraints on the age of UPLF formation

    Water redistribution in experimentally deformed natural milky quartz single crystals?Implications for H2O-weakening processes

    Get PDF
    Natural quartz single crystals were experimentally deformed in two orientations: (1) ⊥ to one prism plane and (2) in O+ orientation at 900 and 1000°C, 1.0 and 1.5 GPa, and strain rates of ~1 × 10−6 s−1. In addition, hydrostatic and annealing experiments were performed. The starting material was milky quartz, which consisted of dry quartz with a large number of fluid inclusions of variable size up to several 100 µm. During pressurization fluid inclusions decrepitated producing much smaller fluid inclusions. Deformation on the sample scale is anisotropic due to dislocation glide on selected slip systems and inhomogeneous due to an inhomogeneous distribution of fluid inclusions. Dislocation glide is accompanied by minor dynamic recovery. Strongly deformed regions show a pointed broad absorption band in the ~3400 cm−1 region consisting of a superposition of bands of molecular H2O and three discrete absorption bands (at 3367, 3400, and 3434 cm−1). In addition, there is a discrete absorption band at 3585 cm−1, which only occurs in deformed regions and reduces or disappears after annealing, so that this band appears to be associated with dislocations. H2O weakening in inclusion‐bearing natural quartz crystals is assigned to the H2O‐assisted dislocation generation and multiplication. Processes in these crystals represent recycling of H2O between fluid inclusions, cracking and crack healing, incorporation of structurally bound H in dislocations, release of H2O from dislocations during recovery, and dislocation generation at very small fluid inclusions. The H2O weakening by this process is of disequilibrium nature because it depends on the amount of H2O available

    A carbon tax for Ireland

    No full text
    The Programme for Government 2007-2012 states that “[a]ppropriate fiscal instruments, including a carbon levy, will be phased in on a revenue-neutral basis over the lifetime of this Government.”2 The terms of reference3 of the Commission on Taxation repeats the commitment “to introduce measures to further lower carbon emissions and to phase in o

    On the microstructure and symmetry of apparently hexagonal BaAl2O4

    No full text
    The P63 (a=2ap, b=2bp, c=cp) crystal structure reported for BaAl2O4 at room temperature has been carefully re-investigated by a combined transmission electron microscopy and neutron powder diffraction study. It is shown that the poor fit of this P63 (a=2ap, b=2bp, c=cp) structure model for BaAl2O4 to neutron powder diffraction data is primarily due to the failure to take into account coherent scattering between different domains related by enantiomorphic twinning of the P6322 parent sub-structure. Fast Fourier transformation of [0 0 1] lattice images from small localized real space regions (�10 nm in diameter) are used to show that the P63 (a=2ap, b=2bp, c=cp) crystal structure reported for BaAl2O4 is not correct on the local scale. The correct local symmetry of the very small nano-domains is most likely orthorhombic or monoclinic. © 2008 Elsevier Inc. All rights reserved

    The chiral structure of porous chitin within the wing-scales of Callophrys rubi

    No full text
    The structure of the porous three-dimensional reticulated pattern in the wing scales of the butterfly Callophrys rubi (the Green Hairstreak) is explored in detail, via scanning and transmission electron microscopy. A full 3D tomographic reconstruction of a section of this material reveals that the predominantly chitin material is assembled in the wing scale to form a structure whose geometry bears a remarkable correspondence to the srs net, well-known in solid state chemistry and soft materials science. The porous solid is bounded to an excellent approximation by a parallel surface to the Gyroid, a three-periodic minimal surface with cubic crystallographic symmetry I4132, as foreshadowed by Stavenga and Michielson. The scale of the structure is commensurate with the wavelength of visible light, with an edge of the conventional cubic unit cell of the parallel-Gyroid of approximately 310 nm. The genesis of this structure is discussed, and we suggest it affords a remarkable example of templating of a chiral material via soft matter, analogous to the formation of mesoporous silica via surfactant assemblies in solution. In the butterfly, the templating is achieved by the lipid–protein membranes within the smooth endoplasmic reticulum (while it remains in the chrysalis), that likely form cubic membranes, folded according to the form of the Gyroid. The subsequent formation of the chiral hard chitin framework is suggested to be driven by the gradual polymerisation of the chitin precursors, whose inherent chiral assembly in solution (during growth) promotes the formation of a single enantiomer
    corecore