2,535 research outputs found

    Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field grown transgenic tobacco plants

    Get PDF
    Photorespiration is essential for C3 plants, enabling oxygenic photosynthesis through the scavenging of 2ā€phosphoglycolate. Previous studies have demonstrated that overexpression of the Lā€ and Hā€proteins of the photorespiratory glycine cleavage system results in an increase in photosynthesis and growth in Arabidopsis thaliana. Here, we present evidence that under controlled environment conditions an increase in biomass is evident in tobacco plants overexpressing the Hā€protein. Importantly, the work in this paper provides a clear demonstration of the potential of this manipulation in tobacco grown in field conditions, in two separate seasons. We also demonstrate the importance of targeted overexpression of the Hā€protein using the leafā€specific promoter STā€LS1. Although increases in the Hā€protein driven by this promoter have a positive impact on biomass, higher levels of overexpression of this protein driven by the constitutive CaMV 35S promoter result in a reduction in the growth of the plants. Furthermore in these constitutive overexpressor plants, carbon allocation between soluble carbohydrates and starch is altered, as is the protein lipoylation of the enzymes pyruvate dehydrogenase and alphaā€ketoglutarate complexes. Our data provide a clear demonstration of the positive effects of overexpression of the Hā€protein to improve yield under field conditions

    HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    Full text link
    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.Comment: 15 pages, 9 figure

    Editosome Accessory Factors KREPB9 and KREPB10 in Trypanosoma brucei

    Get PDF
    Multiprotein complexes, called editosomes, catalyze the uridine insertion and deletion RNA editing that forms translatable mitochondrial mRNAs in kinetoplastid parasites. We have identified here two new U1-like zinc finger proteins that associate with editosomes and have shown that they are related to KREPB6, KREPB7, and KREPB8, and thus we have named them Kinetoplastid RNA Editing Proteins, KREPB9 and KREPB10. They are conserved and syntenic in trypanosomatids although KREPB10 is absent in Trypanosoma vivax and both are absent in Leishmania. Tandem affinity purification (TAP)-tagged KREPB9 and KREPB10 incorporate into āˆ¼20S editosomes and/or subcomplexes thereof and preferentially associate with deletion subcomplexes, as do KREPB6, KREPB7, and KREPB8. KREPB10 also associates with editosomes that are isolated via a chimeric endonuclease, KREN1 in KREPB8 RNA interference (RNAi) cells, or MEAT1. The purified complexes have precleaved editing activities and endonuclease cleavage activity that appears to leave a 5ā€² OH on the 3ā€² product. RNAi knockdowns did not affect growth but resulted in relative reductions of both edited and unedited mitochondrial mRNAs. The similarity of KREPB9 and KREPB10 to KREPB6, KREPB7, and KREPB8 suggests they may be accessory factors that affect editing endonuclease activity and as a consequence may affect mitochondrial mRNA stability. KREPB9 and KREPB10, along with KREPB6, KREPB7, and KREPB8, may enable the endonucleases to discriminate among and accurately cleave hundreds of different editing sites and may be involved in the control of differential editing during the life cycle of T. brucei

    Common Vetch: A Drought Tolerant, High Protein Neglected Leguminous Crop With Potential as a Sustainable Food Source

    Get PDF
    Ā© Copyright Ā© 2020 Nguyen, Riley, Nagel, Fisk and Searle. Global demand for protein is predicted to increase by 50% by 2050. To meet the increasing demand whilst ensuring sustainability, protein sources that generate low-greenhouse gas emissions are required, and protein-rich legume seeds have the potential to make a significant contribution. Legumes like common vetch (Vicia sativa) that grow in marginal cropping zones and are drought tolerant and resilient to changeable annual weather patterns, will be in high demand as the climate changes. In common vetch, the inability to eliminate the Ī³-glutamyl-Ī²-cyano-alanine (GBCA) toxin present in the seed has hindered its utility as a human and animal food for many decades, leaving this highly resilient species an ā€œorphanā€ legume. However, the availability of the vetch genome and transcriptome data together with the application of CRISPR-Cas genome editing technologies lay the foundations to eliminate the GBCA toxin constraint. In the near future, we anticipate that a zero-toxin vetch variety will become a significant contributor to global protein demand

    Architecture of the trypanosome RNA editing accessory complex, MRB1

    Get PDF
    Trypanosoma brucei undergoes an essential process of mitochondrial uridine insertion and deletion RNA editing catalyzed by a 20S editosome. The multiprotein mitochondrial RNA-binding complex 1 (MRB1) is emerging as an equally essential component of the trypanosome RNA editing machinery, with additional functions in gRNA and mRNA stabilization. The distinct and overlapping protein compositions of reported MRB1 complexes and diverse MRB1 functions suggest that the complex is composed of subcomplexes with RNA-dependent and independent interactions. To determine the architecture of the MRB1 complex, we performed a comprehensive yeast two-hybrid analysis of 31 reported MRB1 proteins. We also used in vivo analyses of tagged MRB1 components to confirm direct and RNA-mediated interactions. Here, we show that MRB1 contains a core complex comprised of six proteins and maintained by numerous direct interactions. The MRB1 core associates with multiple subcomplexes and proteins through RNA-enhanced or RNA-dependent interactions. These findings provide a framework for interpretation of previous functional studies and suggest that MRB1 is a dynamic complex that coordinates various aspects of mitochondrial gene regulation

    Labor-associated gene expression in the human uterine fundus, lower segment, and cervix

    Get PDF
    Background Preterm labor, failure to progress, and postpartum hemorrhage are the common causes of maternal and neonatal mortality or morbidity. All result from defects in the complex mechanisms controlling labor, which coordinate changes in the uterine fundus, lower segment, and cervix. We aimed to assess labor-associated gene expression profiles in these functionally distinct areas of the human uterus by using microarrays. Methods and Findings Samples of uterine fundus, lower segment, and cervix were obtained from patients at term (mean +/- 6 SD = 39.1 +/- 0.5 wk) prior to the onset of labor (n = 6), or in active phase of labor with spontaneous onset (n = 7). Expression of 12,626 genes was evaluated using microarrays ( Human Genome U95A; Affymetrix) and compared between labor and non-labor samples. Genes with the largest labor-associated change and the lowest variability in expression are likely to be fundamental for parturition, so gene expression was ranked accordingly. From 500 genes with the highest rank we identified genes with similar expression profiles using two independent clustering techniques. Sets of genes with a probability of chance grouping by both techniques less than 0.01 represented 71.2%, 81.8%, and 79.8% of the 500 genes in the fundus, lower segment, and cervix, respectively. We identified 14, 14, and 12 those sets of genes in the fundus, lower segment, and cervix, respectively. This enabled networks of coregulated and co-expressed genes to be discovered. Many genes within the same cluster shared similar functions or had functions pertinent to the process of labor. Conclusions Our results provide support for many of the established processes of parturition and also describe novel-to-labor genes not previously associated with this process. The elucidation of these mechanisms likely to be fundamental for controlling labor is an important prerequisite to the development of effective treatments for major obstetric problems - including prematurity, with its long-term consequences to the health of mother and offspring

    Impact of flavour solvent (propylene glycol or triacetin) on vanillin, 5-(hydroxymethyl)furfural, 2,4-decadienal, 2,4-heptadienal, structural parameters and sensory perception of shortcake biscuits over accelerated shelf life testing

    Get PDF
    The influence of choice of flavour solvent, propylene glycol (PG) or triacetin (TA), was investigated during accelerated shelf life (ASL) testing of shortcake biscuits. Specifically, the differential effect on the stability of added vanillin, the natural baked marker compound 5-(hydroxymethyl)furfural (HMF), specific markers of oxidative rancidity (2,4-decadienal, 2,4-heptadienal), and the structural parameters of hardness and fracturability. Significantly more HMF was formed during baking of biscuits prepared with TA; these biscuits were also more stable to oxidative degradation and loss of vanillin during ageing than biscuits prepared with PG. Fresh TA biscuits were significantly more brittle than fresh PG biscuits. There was no impact of solvent choice on hardness. Sensory evaluation of hardness, vanilla flavour and oily off-note was tested during ASL testing. There was no significant impact of storage on sensory ratings for either the PG or TA biscuits. Ā© 2013 Elsevier Ltd

    Association of Paternal Age and Risk for Major Congenital Anomalies From the National Birth Defects Prevention Study, 1997 to 2004

    Get PDF
    The objective of this study was to examine the associations between paternal age and birth defects of unknown etiologies while carefully controlling for maternal age

    Continuous and non-invasive thermography of mouse skin accurately describes core body temperature patterns, but not absolute core temperature

    Get PDF
    Body temperature is an important physiological parameter in many studies of laboratory mice. Continuous assessment of body temperature has traditionally required surgical implantation of a telemeter, but this invasive procedure adversely impacts animal welfare. Near-infrared thermography provides a non-invasive alternative by continuously measuring the highest temperature on the outside of the body (Tskin), but the reliability of these recordings as a proxy for continuous core body temperature (Tcore) measurements has not been assessed. Here, Tcore (30 s resolution) and Tskin (1 s resolution) were continuously measured for three days in mice exposed to ad libitum and restricted feeding conditions. We subsequently developed an algorithm that optimised the reliability of a Tskin-derived estimate of Tcore. This identified the average of the maximum Tskin per minute over a 30-min interval as the optimal way to estimate Tcore. Subsequent validation analyses did however demonstrate that this Tskin-derived proxy did not provide a reliable estimate of the absolute Tcore due to the high between-animal variability in the relationship between Tskin and Tcore. Conversely, validation showed that Tskin-derived estimates of Tcore reliably describe temporal patterns in physiologically-relevant Tcore changes and provide an excellent measure to perform within-animal comparisons of relative changes in Tcore

    Hematopoietic Fingerprints: An Expression Database of Stem Cells and Their Progeny

    Get PDF
    SummaryHematopoietic stem cells (HSCs) continuously regenerate the hematologic system, yet few genes regulating this process have been defined. To identify candidate factors involved in differentiation and self-renewal, we have generated an expression database of hematopoietic stem cells and their differentiated progeny, including erythrocytes, granulocytes, monocytes, NK cells, activated and naive T cells, and BĀ cells. Bioinformatic analysis revealed HSCs were more transcriptionally active than their progeny and shared a common activation mechanism with T cells. Each cell type also displayed unique biases in the regulation of particular genetic pathways, with Wnt signaling particularly enhanced in HSCs. We identified āˆ¼100ā€“400 genes uniquely expressed in each cell type, termed lineage ā€œfingerprints.ā€ In overexpression studies, two of these genes, Zfp105 from the NKĀ cell lineage, and Ets2 from the monocyte lineage, were able to significantly influence differentiation toward their respective lineages, demonstrating the utility of the fingerprints for identifying genes that regulate differentiation
    • ā€¦
    corecore