389 research outputs found
The tight junction protein claudin-1 influences cranial neural crest cell emigration
The neural crest is a population of migratory cells that follows specific pathways during development, eventually differentiating to form parts of the face, heart, and peripheral nervous system, the latter of which includes contributions from placodal cells derived from the ectoderm. Stationary, premigratory neural crest cells acquire the capacity to migrate by undergoing an epithelial-to-mesenchymal transition that facilitates their emigration from the dorsal neural tube. This emigration involves, in part, the dismantling of cell-cell junctions, including apically localized tight junctions in the neuroepithelium. In this study, we have characterized the role of the transmembrane tight junction protein claudin-1 during neural crest and placode ontogeny. Our data indicate that claudin-1 is highly expressed in the developing neuroepithelium but is down-regulated in migratory neural crest cells, although expression persists in the ectoderm from which the placode cells arise. Depletion or overexpression of claudin-1 augments or reduces neural crest cell emigration, respectively, but does not impact the development of several cranial placodes. Taken together, our results reveal a novel function for a tight junction protein in the formation of migratory cranial neural crest cells in the developing vertebrate embryo
Web-Based Simulation: Evolution or Revolution?
ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 1, January 2000, Pages 3–17
Discrimination of Potent Inhibitors of Toxoplasma gondii Enoyl-Acyl Carrier Protein Reductase by a Thermal Shift Assay
Many microbial pathogens rely on a type II fatty acid synthesis (FASII) pathway that is distinct from the type I pathway found in humans. Enoyl-acyl carrier protein reductase (ENR) is an essential FASII pathway enzyme and the target of a number of antimicrobial drug discovery efforts. The biocide triclosan is established as a potent inhibitor of ENR and has been the starting point for medicinal chemistry studies. We evaluated a series of triclosan analogues for their ability to inhibit the growth of Toxoplasma gondii, a pervasive human pathogen, and its ENR enzyme (TgENR). Several compounds that inhibited TgENR at low nanomolar concentrations were identified but could not be further differentiated because of the limited dynamic range of the TgENR activity assay. Thus, we adapted a thermal shift assay (TSA) to directly measure the dissociation constant (Kd) of the most potent inhibitors identified in this study as well as inhibitors from previous studies. Furthermore, the TSA allowed us to determine the mode of action of these compounds in the presence of the reduced nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide (NAD+) cofactor. We found that all of the inhibitors bind to a TgENR–NAD+ complex but that they differed in their dependence on NAD+ concentration. Ultimately, we were able to identify compounds that bind to the TgENR–NAD+ complex in the low femtomolar range. This shows how TSA data combined with enzyme inhibition, parasite growth inhibition data, and ADMET predictions allow for better discrimination between potent ENR inhibitors for the future development of medicine
Selective Phosphonylation of 5′-Adenosine Monophosphate (5′-AMP) via Pyrophosphite [PPi(III)]
We describe here experiments which demonstrate the selective phospho-transfer from a plausibly prebiotic condensed phosphorus (P) salt, pyrophosphite [H2P2O52−; PPi(III)], to the phosphate group of 5′-adenosine mono phosphate (5′-AMP). We show further that this P-transfer process is accelerated both by divalent metal ions (M2+) and by organic co-factors such as acetate (AcO−). In this specific case of P-transfer from PPi(III) to 5′-AMP, we show a synergistic enhancement of transfer in the combined presence of M2+ & AcO−. Isotopic labelling studies demonstrate that hydrolysis of the phosphonylated 5′-AMP, [P(III)P(V)-5′-AMP], proceeds via nuceophilic attack of water at the Pi(III) terminus
A Facile Palladium Catalysed 3-Component Cascade Route to Functionalised Isoquinolinones and Isoquinolines
Palladium catalysed three component cascade process, involving coupling of 2-iodobenzoates, -benzaldehydes, or acetophenones with substituted allenes and ammonium tartrate as an ammonium surrogate, provides a novel and facile route to substituted functionalised isoquinolinones and isoquinolines in good yields
Discovery of biphenylacetamide-derived inhibitors of BACE1 using de novo structure-based molecular design
β-Secretase (BACE1), the enzyme responsible for the first and rate-limiting step in the production of amyloid-β peptides, is an attractive target for the treatment of Alzheimer’s disease. In this study, we report the application of the de novo fragment-based molecular design program SPROUT to the discovery of a series of nonpeptide BACE1 inhibitors based upon a biphenylacetamide scaffold. The binding affinity of molecules based upon this designed molecular scaffold was increased from an initial BACE1 IC50 of 323 μM to 27 μM following the synthesis of a library of optimized ligands whose structures were refined using the recently developed SPROUT-HitOpt software. Although a number of inhibitors were found to exhibit cellular toxicity, one compound in the series was found to have useful BACE1 inhibitory activity in a cellular assay with minimal cellular toxicity. This work demonstrates the power of an in silico fragment-based molecular design approach in the discovery of novel BACE1 inhibitors
New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections
Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 μM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites
A qualitative evidence synthesis of employees' views of workplace smoking reduction or cessation interventions
Background
The need to reduce smoking rates is a recognised public health policy issue in many countries. The workplace offers a potential context for offering smokers’ programmes and interventions to assist smoking cessation or reduction. A qualitative evidence synthesis of employees’ views about such programmes might explain why some interventions appear effective and others not, and can be used to develop evidence-based interventions for this population and setting.
Methods
A qualitative evidence synthesis of primary research exploring employees’ views about workplace interventions to encourage smoking cessation, including both voluntary programmes and passive interventions, such as restrictions or bans. The method used was theory-based “best fit” framework synthesis.
Results
Five relevant theories on workplace smoking cessation were identified and used as the basis for an a priori framework. A comprehensive literature search, including interrogation of eight databases, retrieved 747 unique citations for the review. Fifteen primary research studies of qualitative evidence were found to satisfy the inclusion criteria. The synthesis produced an evidence-based conceptual model explaining employees’ experiences of, and preferences regarding, workplace smoking interventions.
Conclusion
The synthesis suggests that workplace interventions should employ a range of different elements if they are to prove effective in reducing smoking among employees. This is because an employee who feels ready and able to change their behaviour has different needs and preferences from an employee who is not at that stage. Only a multi-faceted intervention can satisfy the requirements of all employees
In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis
Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis
- …
