28 research outputs found

    Implications of Storing Urinary DNA from Different Populations for Molecular Analyses

    Get PDF
    Molecular diagnosis using urine is established for many sexually transmitted diseases and is increasingly used to diagnose tumours and other infectious diseases. Storage of urine prior to analysis, whether due to home collection or bio-banking, is increasingly advocated yet no best practice has emerged. Here, we examined the stability of DNA in stored urine in two populations over 28 days.Urine from 40 (20 male) healthy volunteers from two populations, Italy and Zambia, was stored at four different temperatures (RT, 4 degrees C, -20 degrees C & -80 degrees C) with and without EDTA preservative solution. Urines were extracted at days 0, 1, 3, 7 and 28 after storage. Human DNA content was measured using multi-copy (ALU J) and single copy (TLR2) targets by quantitative real-time PCR. Zambian and Italian samples contained comparable DNA quantity at time zero. Generally, two trends were observed during storage; no degradation, or rapid degradation from days 0 to 7 followed by little further degradation to 28 days. The biphasic degradation was always observed in Zambia regardless of storage conditions, but only twice in Italy.Site-specific differences in urine composition significantly affect the stability of DNA during storage. Assessing the quality of stored urine for molecular analysis, by using the type of strategy described here, is paramount before these samples are used for molecular prognostic monitoring, genetic analyses and disease diagnosis

    A canine leishmaniasis pilot survey in an emerging focus of visceral leishmaniasis: Posadas (Misiones, Argentina)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing number of reports are calling our attention to the worldwide spread of leishmaniasis. The urbanization of zoonotic visceral leishmaniasis (VL) has been observed in different South American countries, due to changes in demographic and ecological factors. In May 2006, VL was detected for the first time in the city of Posadas (Misiones, Argentina). This event encouraged us to conduct a clinical and parasitological pilot survey on domestic dogs from Posadas to identify their potential role as reservoirs for the disease.</p> <p>Methods</p> <p>One hundred and ten dogs from the city of Posadas were included in the study. They were selected based on convenience and availability. All dogs underwent clinical examination. Symptomatology related to canine leishmaniasis was recorded, and peripheral blood and lymph node aspirates were collected. Anti-<it>Leishmania </it>antibodies were detected using rK39-immunocromatographic tests and IFAT. Parasite detection was based on peripheral blood and lymph node aspirate PCR targeting the <it>SSUrRNA </it>gene. Molecular typing was addressed by DNA sequence analysis of the PCR products obtained by <it>SSUrRNA </it>and ITS-1 PCR.</p> <p>Results</p> <p>According to clinical examination, 69.1% (76/110) of the dogs presented symptoms compatible with canine leishmaniasis. Serological analyses were positive for 43.6% (48/110) of the dogs and parasite DNA was detected in 47.3% (52/110). A total of 63 dogs (57.3%) were positive by serology and/or PCR. Molecular typing identified <it>Leishmania infantum </it>(syn. <it>Leishmania chagasi</it>) as the causative agent.</p> <p>Conclusions</p> <p>This work confirms recent findings which revealed the presence of <it>Lutzomyia longipalpis</it>, the vector of <it>L. infantum </it>in this area of South America. This new VL focus could be well established, and further work is needed to ascertain its magnitude and to prevent further human VL cases.</p

    Seropositivity rates for agents of canine vector-borne diseases in Spain : a multicentre study

    Get PDF
    Background: Controlling canine vector-borne diseases (CVBD) is a major concern, since some of these diseases are serious zoonoses. This study was designed to determine seropositivity rates in Spain for agents causing the following five CVBD: leishmaniosis (Leishmania infantum: Li), heartworm (Dirofilaria immitis: Di), ehrlichiosis (Ehrlichia canis: Ec), anaplasmosis (Anaplasma phagocytophilum/Anaplasma platys: An) and Lyme disease (Borrelia burgdorferi: Bb). Methods: Anti-An, -Bb, and -Ec antibodies and the Di antigen were determined using the 4DX SNAP® Test (IDEXX Laboratories) and anti-L. infantum (Li) antibodies using the Leishmania SNAP® Test (IDEXX Laboratories) in blood and/or serum samples. Results: Among 1100 dogs examined, overall seropositivity rates were: Li (15.7%), Ec (5%), An (3.1%), Di (1.25%) and Bb (0.4%). While seropositivity towards Bb and Di was similar in all geographic regions, rates were significantly higher in the east of Spain (8.3%) for An, significantly higher in the north (20%) for Ec, and significantly higher in the Southeast (46.6%) and South (27.4%), and significantly lower in the north (0%) for Li. No statistical associations were observed between sex and the CVBD analyzed (p ≥ 0.05) while the following associations with other variables were detected: a higher seropositivity to Ec (40%) and Bb (6.7%) in dogs under one year of age compared with adults (p < 0.05); and a higher seropositivity to An and Li in dogs that lived outdoors versus indoors (p = 0.01; p < 0.001, respectively). Seropositivity rates of 2.1%, 0%, 1.7%, 0.5% and 4.2% were recorded respectively for An, Bb, Ec, Di and Li in dogs with no clinical signs (n = 556) versus 3.8%, 0.6%, 7.5%, 1.8% and 25.9% for those with signs (n = 507) suggestive of a CVBD. Conclusion: The data obtained indicate a risk for dogs in Spain of acquiring any of the five CVBD examined. Veterinarians in the different regions should include these diseases in their differential diagnoses and recommend the use of repellents and other prophylactic measures to prevent disease transmission by arthropod vectors. Public health authorities also need to become more involved in the problem, since some of the CVBD examined here also affect humans

    Particulate Fillers in Thermoplastics

    Get PDF
    The characteristics of particulate filled thermoplastics are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape, while the main matrix property is stiffness. Segregation, aggregation and the orientation of anisotropic particles determine structure. Interfacial interactions lead to the formation of a stiff interphase considerably influencing properties. Interactions are changed by surface modification, which must be always system specific and selected according to its goal. Under the effect of external load inhomogeneous stress distribution develops around heterogeneities, which initiate local micromechanical deformation processes determining the macroscopic properties of the composites
    corecore