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Definition 

 The characteristics of particulate filled thermoplastics are determined by four factors: 

component properties, composition, structure and interfacial interactions. The most important 

filler characteristics are particle size, size distribution, specific surface area and particle 

shape, while the main matrix property is stiffness. Segregation, aggregation and the 

orientation of anisotropic particles determine structure. Interfacial interactions lead to the 

formation of a stiff interphase considerably influencing properties. Interactions are changed 

by surface modification, which must be always system specific and selected according to its 
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goal. Under the effect of external load inhomogeneous stress distribution develops around 

heterogeneities, which initiate local micromechanical deformation processes determining the 

macroscopic properties of the composites.  

1. INTRODUCTUION 

  Particulate filled polymers are used in very large quantities in all kinds of 

applications. The total consumption of fillers in Europe alone is currently estimated as 4.8 

million tons (Table 1) [6]. In spite of the overwhelming interest in nanocomposites, 

biomaterials and natural fiber reinforced composites, considerable research and 

development is done on particulate filled polymers even today. The reason for the 

continuing interest in traditional composites lays, among others, in the changed role of 

particulate fillers. In the early days fillers were added to the polymer to decrease price. 

However, the ever increasing technical and aesthetical requirements as well as soaring 

material and compounding costs require the utilization of all possible advantages of fillers. 

Fillers increase stiffness and heat deflection temperature, decrease shrinkage and improve 

the appearance of the composites [9-13]. Productivity can be also increased in most 

thermoplastic processing technologies due to their decreased specific heat and increased 

heat conductivity [9,10,14-17]. Fillers are very often introduced into the polymer to create 

new functional properties not possessed by the matrix polymer at all like flame retardancy 

or conductivity [18-21]. Another reason for the considerable research activity is that new 

fillers and reinforcements emerge continuously among others layered silicates [7,22-29], 

wood flour [30-37], sepiolite [38-49], etc. 

 The properties of all heterogeneous polymer systems are determined by the same 

four factors: component properties, composition, structure and interfacial interactions [9, 

50]. Although certain fillers and reinforcements including layered silicates, other 

nanofillers, or natural fibers possess special characteristics, the effect of these four factors 

is universal and valid for all particulate filled materials. As a consequence, in this paper 
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we focus our attention on them and discuss the most important theoretical and practical 

aspects of composite preparation and use accordingly. The general rules of heterogeneous 

materials apply also for nano- and wood reinforced composites. 

2. FACTORS  

 All four factors mentioned in the previous section are equally important in the 

determination of composite properties and they must be adjusted to achieve optimum 

performance and economics.  

 Component properties. The characteristics of the matrix strongly influence the 

effect of the filler on composite properties; reinforcing effect increases with decreasing 

matrix stiffness. True reinforcement takes place in elastomers, both stiffness and strength 

increases [51]. This effect is demonstrated well by Fig. 1, in which the tensile yield stress 

of CaCO3 composites is plotted against composition for two different matrices. LDPE is 

reinforced by the filler, while the yield stress of PVC containing the same filler decreases 

continuously with increasing filler content [52]. For the sake of easier comparison the data 

were plotted on a relative scale, related to the yield stress of the matrix. The direction of 

the change in yield stress or strength is determined by the relative load bearing capacity of 

the components [53,54]. In weak matrices the filler carries a significant part of the load, it 

reinforces the polymer.  

 Composition. Composition, i.e. the filler content of composites may change in a 

wide range. The effect of changing composition on composite properties is clearly seen in 

Fig. 1. The interrelation of various factors determining composite properties is also 

demonstrated by the figure, the same property may change in a different direction as a 

function of matrix characteristics, or interfacial adhesion. The goal of the use of fillers is 

either to decrease cost or to improve properties, e.g. stiffness, dimensional stability, etc. 

These goals require the introduction of the largest possible amount of filler into the 

polymer, but the improvement of the targeted property may be accompanied by the 
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deterioration of others. Since various properties depend in a different way on filler content, 

composite properties must be always determined as a function of composition. 

 Structure. The structure of particulate filled polymers seems to be simple, the 

homogeneous distribution of particles in the polymer matrix is assumed in most cases. 

This, however rarely occurs and often special, particle related structures develop in the 

composites. The most important of these are aggregation and the orientation of anisotropic 

filler particles. 

 Interfacial interactions. Particle/particle interactions induce aggregation, while 

matrix/filler interactions lead to the development of an interphase with properties different 

from those of both components. Secondary, van der Waals forces play a crucial role in the 

development of both kinds of interactions. They are usually modified by the surface 

treatment of the filler. Reactive treatment, i.e. coupling, is also used occasionally, although 

its importance is smaller in thermoplastics than in thermoset matrices.  

 

3. FILLER CHARACTERISTICS 

 The chemical composition of fillers, which is usually supplied by the producer as 

relevant information, is not sufficient for their characterization [9,57], further physical, 

mostly particle characteristics are needed to forecast their performance in a composite for 

any application [9]. A large variety of materials are used as fillers in composites. Besides 

CaCO3 and carbon black (see Table 1) a large number of other materials like mica 

[63,73,95], short [96-98] and long glass fibers [99,100], glass beads [101-110], sepiolite 

[38-49], magnesium and aluminum hydroxide [111-113], wood flour and cellulose [30-

37,115-117], wollastonite [102,118-120], gypsum [121,122], clay [63], metal powders 

(aluminum, iron, nickel) [89,123], steel fibers [124], silicium carbide [123], phenolic 

microspheres [74] and diverse flame retardants [75] are also mentioned as potential fillers 

or reinforcements.  
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3.1. Particle size and distribution 

 The mechanical properties of polymer composites containing uncoated fillers are 

determined mainly by their particle characteristics. One of the basic information supplied 

by the manufacturer is average particle size. Particle size has a pronounced influence on 

composite properties [9,59,126,127]. Modulus, sometimes strength increase, deformability 

and impact resistance usually decrease with decreasing particle size. Particle size itself, 

however, is not sufficient for the characterization of any filler; the knowledge of the 

particle size distribution is equally important [9]. Large particles usually deteriorate the 

deformation and failure characteristics of composites. Large particles easily debond from 

the matrix under loading often leading to the premature failure of the part. Debonding 

stress decreases with increasing particle size [101,128]. The other end of the particle size 

distribution, i.e. the amount of small particles, is equally important. The aggregation 

tendency of fillers increases with decreasing particle size [94,129,130]. Extensive 

aggregation leads to insufficient homogeneity, rigidity and low impact strength  as 

aggregated filler particles act as crack initiation sites [63,94,132-134]. 

 The particle size distribution of fillers is usually determined in dispersion by light 

scattering. This, however, can be very misleading. The particle size distribution of two 

fillers is presented in Fig. 2. Both fillers have a tendency for aggregation, since they 

contain a fraction of small particles, and the particle size distributions determined by 

sedimentation and microscopy differ significantly from each other. These differences 

appear also in the properties of the composites. 

 

3.2. Specific surface area, surface energy 

 The specific surface area of fillers is closely related to their particle size 

distribution and it has a direct impact on composite properties. The adsorption of small 
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molecular weight additives, but also that of the polymer is proportional to the area of the 

matrix/filler interface [9,57]. The adsorption of additives may change stability, while 

matrix/filler interaction significantly influences mechanical properties, first of all yield 

stress, tensile strength and impact resistance [53,54]. 

 The surface free energy of fillers determines both matrix/filler and particle/particle 

interactions. The former has a pronounced effect on the mechanical properties of the 

composite; the latter determines aggregation [9,135]. Both interactions can be modified by 

surface treatment. Non-reactive treatment leads to improved dispersion, but to decreased 

matrix/filler interaction [130,135], while chemical or physical coupling results in 

improved strength [136,137]. Some fillers and reinforcements are supplied with surface 

coating. The amount and character of the coating must be known for the successful 

application of the filler. 

 

3.3. Particle shape 

 The shape of the particles influences the reinforcing effect of the filler, which 

increases with the anisotropy of the particle. Fillers and reinforcements are very often 

differentiated by their degree of anisotropy (aspect ratio). Fillers with plate-like geometry 

like talc, mica, or layered silicates reinforce polymers more than spherical fillers and the 

influence of glass fibers is expected to be even stronger (see Fig. 3) [9,57,102]. However, 

based on published papers, it is difficult to obtain a clear picture about the effect of 

particle characteristics on composite properties for anisotropic fillers. Modulus seems to 

increase with aspect ratio [63,138], although Parrinello [139] found the stiffness of short 

glass fiber filled PP to be independent both of the length and the diameter of the fibers. 

According to Riley [63] impact resistance increases with decreasing particle size, since 

large particles act as flaws, while large aspect ratio is claimed to result in increased stress 

concentration. Tensile strength is said to decrease with increasing particle size, although 
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Trotignon [140] did not observe any change in strength as a function of this characteristic. 

In spite of these contradictions, or just because of them, it is clear that the aspect ratio and 

its distribution also must be considered in the application of anisotropic fillers. Anisotropic 

fillers orientate during processing and they reinforce the polymer only if their orientation 

is parallel to the direction of the load. Since orientation is often not determined, the real 

effect of aspect ratio or particle characteristics in general is difficult to judge.  

 

3.4. Other characteristics 

 The chemical composition and especially purity of fillers have both direct and 

indirect effect on their application possibilities and performance. Traces of heavy metal 

contamination decrease the stability of polyolefins [9] and lead to the discoloration of the 

product. Fillers are surface coated in most applications; coupling agents must be chosen 

according to the chemical characteristics of both the filler and the polymer matrix. The 

hardness of the filler has a strong effect on the wear of the processing equipment [9,12], 

but the size and shape of the particles, composition, viscosity, the rate of processing also 

influence wear [9]. The thermal properties of fillers usually have beneficiary effect on 

productivity and processing. Decreased heat capacity and increased heat conductivity 

decrease cooling time [9]. Changing overall thermal properties result in the modification 

of the skin/core morphology of crystalline polymers and the properties of injection molded 

parts. On the other hand, large differences in the thermal properties of the components 

may lead to the development of thermal stresses [142,143], which might be detrimental to 

properties.  

 Fillers are frequently added to polymers to achieve functional properties not 

possessed by the matrix polymer itself, like flame retardancy and conductivity 

[17,18,75,111,112]. The particle characteristics and physical properties of these additives 

have the same influence on the properties of composites as those of simple fillers. The 
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characteristics of these modifiers must be optimized in order to achieve the desired goal, 

i.e. to produce composites with a given functional property, but acceptable mechanical 

characteristics and aesthetics at the same time. 

4. STRUCTURE 

 Although the structure of particulate filled polymers is usually thought to be very 

simple, often structure related phenomena determine their properties. Structure is strongly 

influenced by the particle characteristics of the filler, composition and the processing 

technology used. The most important structure related phenomena are homogeneity, the 

attrition of the filler or reinforcement, aggregation, and the orientation of anisotropic parti-

cles. Occasionally fillers might modify the structure of crystalline polymers as well. All 

structure related effects must be controlled in order to prepare products of high quality. 

 

4.1. Crystalline matrices, nucleation 

 The properties of crystalline polymers are determined by the relative amount of the 

amorphous and crystalline phases, crystal modification, the size and perfection of 

crystallites, the dimensions of spherulites, and by the number of tie molecules [60]. The 

most important effect of particulate fillers is their ability to act as nucleating agents. The 

very strong nucleating effect of talc in PP was proved many times [64,65]. Similarly to 

talc, layered silicates, and especially montmorillonite (MMT), were shown to nucleate 

polypropylene quite strongly [66-70]. The influence of other fillers and reinforcements is 

not so clear. Many fillers have shown weak nucleation effect in PP [71-73], while some 

others none [74,75]. A closer scrutiny of literature information and experimental data 

indicate that mostly physical and especially topological factors determine the nucleation 

effect of fillers. Fillers may influence also the crystal modification of the matrix. 

Introduction of talc into the β modification of PP resulted in a complete change of 

crystalline structure, the higher crystallization temperature of the α modification prevented 
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the formation of the β form [76,78,79]. Similarly, in the presence of montmorillonite 

polyamide was shown to crystallize mainly in the  form [80-86] irrespectively of the 

presence and/or type of organophilization [87]. 

 Occasionally strong correlation is claimed between the crystalline structure of the 

matrix and composite properties. Hutley and Darlington [91,92] found a more or less 

linear correlation between the crystallization temperature and the falling weight impact 

strength of particulate filled PP, while Maiti [90] observed an even better, linear 

correlation between the crystallinity and tensile characteristics of PP filled with CaCO3 

(Fig. 4). However, the similar effect of the filler on two or more composite characteristics 

might lead to the linear correlation between tensile yield stress and crystallinity as 

observed by Maiti [90] and often to erroneous conclusions. The detailed analysis of 

experimental results obtained on PP composites containing different fillers indicated that 

the effect of changes in crystalline structure may be neglected especially at large filler 

contents [93]. A very efficient nucleating agent may change the modulus of PP from 1.4 to 

1.9 GPa [61], while the introduction of 30 vol% talc results in a composite with a stiffness 

of almost 8 GPa [94]. 

 

4.2. Segregation, attrition 

 The segregation of a second phase during processing was observed in some 

heterogeneous polymer systems [144,145]. Kubát and Szalánczi [144] investigated the 

separation of phases during the injection molding of polyethylene and polyamide using the 

spiral test. The two polymers contained large glass spheres of 50-100 m size and 

extremely long flow paths up to 1.6 m. They found that considerable segregation took 

place along the flow path; the glass content of a composite containing 25 wt% filler 

exceeded 40 % locally at the end of the mold. Segregation was observed also across the 

cross-section of the sample; the amount of filler was larger in the core than at the walls. 
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Segregation depended on filler content and it became more pronounced with increasing 

size of the particles. The possible segregation of talc particles dispersed in a PP matrix was 

investigated under more practical conditions in injection molded specimens of 4 x 10 x 

150 mm dimensions. No differences were detected in filler content as a function of 

position, the particles were homogeneously distributed in the PP matrix independently of 

average filler content. Under practical conditions (small particles, relatively high filler 

content, normal flow path) segregation is of secondary importance, the filler is usually 

homogeneously distributed in the matrix polymer. 

 Another structure related phenomenon is the change of particle dimensions during 

processing. The attrition of fibers, i.e. the change of fiber length and length distribution, is 

an intensively studied question in short fiber reinforced composites [146]. Attrition may 

occur also in composites filled with anisotropic particles with plate like geometry, e.g. 

mica and talc. The cleavage of these fillers is relatively easy and considerable 

delamination may take place during processing, especially in injection molding at the very 

high shear stresses developing [136,147]. Delamination of mica particles was shown to 

improve most properties, but decreasing particle size may lead to aggregation [138]. 

Contrary to traditional fillers, delamination or exfoliation would be very advantageous in 

layered silicate nanocomposites.  

 

4.3. Aggregation 

 Aggregation is a well known phenomenon in particulate filled composites. 

Experience has shown that the probability of aggregation increases with decreasing 

particle size of the filler. The occurrence and extent of aggregation is determined by the 

relative magnitude of the forces which hold together the particles, on the one hand, or try 

to separate them, on the other. Particulate filled polymers are prepared by the melt mixing 

of the components, thus the major attractive and separating forces must be considered 
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under these conditions.  

 When two bodies enter into contact they are attracted to each other. The strength of 

adhesion between two particles is determined by their size and surface energy [150,151], 

i.e. 

     
aABa

RWF    
2

3
       (1) 

where Fa is the adhesive force between the particles, WAB is the reversible work of 

adhesion and Ra = R1R2/(R1 + R2), an effective radius for particles of different size. In the 

presence of fluids, i.e. in suspensions, but also in the polymer melt during 

homogenization, further forces act among the particles. Depending on the extent of 

particle wetting, Adam and Edmondson [151] specify two attractive forces. When wetting 

is complete, viscous force (Fv) acts between particles separating them from each other 

with a constant rate. Fv depends on the viscosity of the fluid, on separation rate and on the 

initial distance of the particles. The viscous force might have some importance during the 

homogenization of composites. If the particles are wetted only partially by the fluid (melt), 

liquid bridges form and capillary forces develop among them. Four main types of 

electrostatic forces can hold between charged particles together: Coulomb, image charge, 

space charge and dipole forces [152]. The magnitude of all four is around 10-7 - 10-8 N, 

they are significantly smaller than other forces acting among filler particles.  

 The number of forces separating the particles is smaller. Repulsive forces may act 

between particles with the same electrostatic charge. The mixing of fluids leads to the 

development of shear forces, which try to separate the particles. The maximum 

hydrodynamic force acting on spheres in a uniform shear field can be expressed as 

[151,153] 

          12.6  
2

RF
h

     (2) 

where  is melt viscosity and   is shear rate. 
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 Both adhesive and hydrodynamic forces depend on the size of the particles. The 

estimation of the two forces by Eqs. 1 and 2 shows that below a certain particle size 

adhesion exceeds shear forces and the particles aggregate in the melt. Since commercial 

fillers have a relatively broad particle size distribution, most fillers aggregate in some 

extent and the exact determination of the critical particle size, or any other filler character-

istic at which aggregation appears is difficult. 

 Since the relative magnitude of adhesive and shear forces determine the occurrence 

and extent of aggregation in a composite, the ratio of the two forces gives information 

about the possibilities to avoid or decrease it, i.e. 

     
R

W
k

F

F
AB

h
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
      (3) 

where k includes all constants of Eqs. 1 and 2. Increasing shear rate and particle size will 

result in decreased aggregation. Naturally both can be changed only in a limited range 

since excessive shear leads to degradation, while large particles easily debond from the 

matrix under the effect of external load leading to inferior composite properties. 

According to Eq. 3, smaller reversible work of adhesion also improves homogeneity. Non-

reactive surface treatment invariably leads to the decrease of surface tension and WAB (see 

Section 6.1.), thus to decreased aggregation, improved processability and mechanical 

properties.  

 The presence of aggregates is practically always detrimental to the properties of 

composites as shown in Fig. 5. The strength of PP/CaCO3 composites initially increases 

with increasing specific surface area of the filler, but it strongly decreases when 

aggregation takes place at small particle sizes. The effect is even more pronounced for 

impact properties, the fracture resistance of composites containing aggregated particles 

drastically decreases with increasing number of aggregates [63,133]. Aggregates may act 

as fracture initiation sites and depending on aggregate strength [94] they may break under 
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the effect of external load, which results in the failure of the product. The phenomenon is 

demonstrated by Fig. 6 showing the initiation and propagation of a crack through an 

aggregate in a PP/CaCO3 composite containing small particles. 

4.4. Orientation of anisotropic particles 

 Another processing induced structural phenomenon is the orientation of anisotropic 

particles. Both the phenomenon and the resulting structure are similar in short fiber 

reinforced and particulate filled composites. Plate like, planar reinforcements, however, 

have some advantages over fibers; the orientation dependent shrinkage of particulate filled 

composites is significantly smaller than that of the fiber reinforced ones [9]. Orientation 

and orientation distribution strongly influence property distribution and the overall 

performance of the product [156]. 

 The orientation distribution of fibers and anisotropic particles is determined by the 

flow pattern and shear forces developeding during processing [157]. Orientation is 

observed both in extrusion [158,159] and in injection molding, and even the relatively 

mild shearing conditions of compression molding may induce the orientation of filler 

particles [159]. In injection molded PP/talc composites parallel orientation was observed 

at the wall, while more random distribution in the middle of the injection molded plates. 

Average orientation shows significant composition dependence [159]. The average 

orientation of particles relative to the direction of the external load determines properties. 

Increasing alignment results in increased reinforcement, i.e. larger modulus, stress and 

impact strength [162] (see Fig. 7). 

 The orientation of anisotropic filler particles has an especially pronounced effect 

on the strength of injection molded parts containing weld lines. Fountain flow in the mold 

leads to the orientation of particles parallel with the melt front resulting in decreased weld 

line strength [164-166]. Increasing particle size and filler content result in a decrease of 

the weld line strength [164,167], which can be improved by changing particle 
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characteristics (size, treatment, aspect ratio) [164] and mold construction [165]. 

 

 

5. INTERFACIAL INTERACTIONS, INTERPHASE 

 Interfacial interactions play a decisive role in the determination of the mechanical 

properties of particulate filled polymers, but they strongly influence other characteristics 

like processability or aesthetics as well.  

 

5.1. Type and strength of interaction 

 Both the polymers used as matrices in particulate filled composites and the fillers or 

reinforcements have the most diverse physical and chemical structures, thus a wide variety of 

interactions may form between them. Two boundary cases of interactions can be 

distinguished: covalent bonds, which rarely form spontaneously, but can be created by 

special surface treatments, and zero interaction, which does not exist in reality, since at least 

secondary, van der Waals forces always act between the components. In practice the strength 

of the interaction is somewhere between the two boundary cases.  

 The theory of adsorption interaction is applied the most widely for the description of 

interaction in particulate filled or reinforced polymers [172]. The approach is based on the 

theory of contact wetting, in which interfacial adhesion is created by secondary forces. 

Accordingly, the strength of the adhesive bond is assumed to be proportional to the reversible 

work of adhesion (WAB), which is necessary to separate two phases with the creation of new 

surfaces. The Dupré equation relates WAB to the surface (A and B) and interfacial (AB) 

tension of the components in the following way 

     
ABBAAB

W             (4) 

Unfortunately interfacial tension cannot be measured directly; it is usually derived from 

thermodynamic calculations. Fowkes [173,174] assumed that surface tension can be divided 
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into components, which can be determined separately. The theory can be applied relatively 

easily for apolar interactions when only dispersion forces act between surfaces. Its 

generalization for polar interactions is more complicated and the geometric mean 

approximation gained the widest acceptance. This considers only the dispersion and a polar 

component of surface tension, but the latter includes all polar interactions [175]. According to 

the approach interfacial tension can be calculated as 

       2/12/1
  2    2      

BABABAAB
     (5) 

 The surface tension of two thermoplastics and three fillers are listed in Table 2. Large 

differences can be observed both in the dispersion, but especially in the polar component. 

The surface tension of the majority of polymers is in the same range as shown in Table 2, in 

fact between that of PP and PMMA. The examples listed in the table represent the most 

important particulate fillers and reinforcements used in practice, since clean glass fibers 

possess similar surface tensions as SiO2.  

 Although Eq. 5 tries to take into account the effect of the polarity of the surfaces in 

some extent, the role of acid-base interactions in adhesion became clear and theories 

describing them are more and more accepted [176]. Fowkes [177] suggested that the 

reversible work of adhesion should be defined as 

    p

AB

ab

AB

d

ABAB
WWWW            (6) 

where WAB
ab is the part of the reversible work of adhesion created by acid-base interactions. 

According to Fowkes the polar component can be neglected, i.e. WAB
p ~ 0, thus WAB can be 

expressed as 

      abd

B

d

AAB HfnW      2  
2/1

     (7) 

where Hab is the change in free enthalpy due to acid-base interactions, n is the number of 

moles interacting with a unit surface and f is a conversion factor, which takes into account the 

difference between free energy and free enthalpy (f  1) [177,178]. The enthalpy of acid-base 
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interaction, ΔHab, necessary for the determination of the specific component of the reversible 

work of adhesion, can be calculated from the acid-base constants of the interacting phases by 

using the theory of Drago [179] or Guttman [180].  

 In most cases the strength of the adhesive bond is characterized acceptably by the 

reversible work of adhesion values calculated by the above theory. Often, especially in 

apolar systems, a close correlation exists between WAB and the macroscopic properties of 

the composite (Fig. 8). In spite of the imperfections of the approach, the reversible work 

of adhesion can be used for the characterization of matrix/filler interactions in particulate 

filled polymers. The quantities necessary for the calculation of WAB can be determined by 

inverse gas chromatography [181], while parameters related to interfacial adhesion can be 

derived from appropriate models [53,54,182]. 

 

5.2. Interphase formation 

 As Table 2 shows, non-treated fillers and reinforcements have high energy surfaces. 

During the almost exclusively used melt mixing procedure, the forces discussed in the 

previous section lead to the adsorption of polymer chains onto the active sites of the filler 

surface. The adsorption of polymer molecules results in the development of a layer which has 

properties different from those of the matrix polymer [183-193]. Although the character, 

thickness and properties of this interlayer or interphase are much discussed topics, its 

existence is an accepted fact now. 

 The overall properties of the interphase, however, are not completely clear. Based on 

model calculations the formation of a soft interphase is claimed [194], while in most cases the 

increased stiffness of composites is explained at least partly with the presence of a stiff 

interphase [53,54,101,195]. The contradiction obviously stems from two opposing effects. 

The imperfection of the crystallites and decreased crystallinity of the interphase should lead 

to smaller modulus and strength, as well as to larger deformability [188]. Adhesion and 
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hindered mobility of adsorbed polymer chains, on the other hand, decrease deformability and 

increase the strength of the interlayer. 

 The thickness of the interphase is a similarly intriguing and contradictory question. It 

depends on the type and strength of the interaction and values from 10 Å to several microns 

have been reported in the literature for the most diverse systems [52,135,199-208]. Since 

interphase thickness is calculated or deduced indirectly from measured quantities, it depends 

also on the method of determination. Table 3 presents some data for different particulate 

filled polymers. Thermodynamic considerations and extraction experiments yield interphase 

thicknesses which are not influenced by the extent of deformation. In mechanical 

measurements, however, the material is always deformed even during the determination of 

modulus. The role and effect of immobilized chain ends increase with increasing deformation 

and the determined interphase thickness increases as well, which proves that chains are 

attached to the surface of the filler indeed (see Table 3). 

 The thickness of the interphase depends on the strength of the interaction. Interphase 

thicknesses derived from mechanical measurements are plotted as a function of WAB in Fig. 9 

for CaCO3 composites prepared with four different matrices: PVC, plasticized PVC (pPVC), 

PP and LDPE. Acid-base interactions were also considered in the calculation of WAB [207]. 

The thickness of the interphase changes linearly with increasing adhesion. The figure proves 

several of the points mentioned above. The reversible work of adhesion adequately describes 

the strength of the interactions created mostly by secondary forces and the thickness of the 

interphase is closely related to the strength of interaction. 

 The amount of polymer bonded in the interphase depends on the thickness of the 

interlayer and on the size of the contact area between the filler and the polymer. Interface area 

is related to the specific surface area of the filler (Af), which is inversely proportional to 

particle size. Modulus shows only a very weak dependence on the specific surface area of the 

filler [209]. Properties measured at larger deformations, e.g. tensile yield stress or tensile 
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strength, depend much stronger on Af than modulus [209]. Fig. 10 shows that yield stresses 

larger than the corresponding value of the matrix can be achieved, i.e. even spherical fillers 

can reinforce polymers [53,54]. If adhesion is strong, yielding should be initiated at the 

matrix value and no reinforcement would be possible. The reinforcing effect of spherical 

particles can be explained only with the presence of a hard interphase having properties 

somewhere between those of the polymer and the filler [53,54]. 

 

5.3. Wetting 

 The maximum performance of a composite can be achieved only if the wetting of 

the filler or reinforcement by the polymer is perfect [62,210,211]. The non-reactive 

treatment of fillers with surfactants is claimed to improve wettability due to changing 

polarity. The improvement in mechanical properties as an effect of coating is often falsely 

interpreted as the result of better wetting and interaction. However, according to Fox [212] 

the wetting of a high energy solid by a low surface tension fluid is always complete. This 

condition is completely satisfied by polymers, including apolar ones like PP or PE, and all 

inorganic fillers (see Table 2). If wettability is characterized by the thermodynamic 

quantity 

     
ABBAAB

S             (8) 

where A > B, wettability decreases on surface treatment due to the drastic decrease of the 

surface tension of the filler. The correlation is demonstrated by Fig. 11 where SAB is 

plotted against the surface coverage of a CaCO3 filler with stearic acid [214]. The larger is 

SAB the better is wettability and in the case of negative values definite contact angle 

develops (partial wetting). As a consequence, wetting becomes poorer on surface coating, 

but it results in weaker interactions at the same time, which lead to a considerable decrease 

in aggregation, to better dispersion and homogeneity, easier processing, good mechanical 

properties and appearance. However, wetting has also kinetic conditions, which depend on 
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the viscosity of the polymer, processing technology and particle characteristics, which 

might not always be optimal during composite preparation. However, particle related 

problems (debonding, aggregation) and insufficient homogenization usually create more 

problems than wetting. 

 

6. SURFACE MODIFICATION 

 The easiest way to change interfacial interactions is the surface coating of fillers. 

Surface modification is often regarded as a magic, which solves all problems of processing 

technology and product quality, but it works only if the compound used for the treatment 

(coupling agent, surfactant, etc.) is selected according to the characteristics of the components 

and the goal of the modification. Surface treatment modifies both particle/particle and 

matrix/filler interactions, and the properties of the composite are determined by the combined 

effect of the two. Besides its type, also the amount of the surfactant or coupling agent must be 

optimized both from the technical and the economical point of view.  

 

6.1. Non-reactive treatment 

 The oldest and most often used modification of fillers is the coverage of their surface 

with a small molecular weight organic compound [58,135,181,207,214]. Usually amphoteric 

surfactants are used which have one or more polar groups and a long aliphatic tail. Typical 

example is the surface treatment of CaCO3 with stearic acid [58,135,181,207, 214-216]. The 

principle of the treatment is the preferential adsorption of the surfactant onto the surface of 

the filler. The high energy surfaces of inorganic fillers (see Table 2) can often enter into 

special interactions with the polar group of the surfactant. Preferential adsorption is promoted 

in a large extent by the formation of ionic bonds between stearic acid and the surface of 

CaCO3 [217], but in other cases hydrogen or even covalent bonds may also form. Surfactants 

diffuse to the surface of the filler even from the polymer melt, which is a further proof for 
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preferential adsorption [218].  

 One of the crucial questions of non-reactive treatment, which, however, is very often 

neglected, is the amount of surfactant to use. It depends on the type of the interaction, the 

surface area occupied by the coating molecule, its alignment to the surface, on the specific 

surface area of the filler and on some other factors. The determination of the optimum 

amount of surfactant is essential for efficient treatment. Insufficient amount does not achieve 

the desired effect, while excessive quantities lead to processing problems as well as to the 

deterioration of the mechanical properties and appearance of the product [217,221]. The 

amount of bonded surfactant can be determined by simple techniques. A dissolution method 

proved to be very convenient for the optimization of non-reactive surface treatment and for 

the characterization of the efficiency of the coating technology as well [217,222]. First the 

surface of the filler is covered with increasing amounts of surfactant, and then the non-

bonded part is dissolved with a solvent. The technique is demonstrated in Fig. 12, which 

presents a dissolution curve showing the adsorption of stearic acid on CaCO3. Surface 

coating is preferably carried out with the irreversibly bonded surfactant (c100); at this 

composition the total amount of surfactant used for the treatment is bonded to the filler 

surface. The filler can adsorb more surfactant (cmax), but during compounding a part of it can 

be removed from the surface and might deteriorate properties. The specific surface area of the 

filler is an important factor which must be taken into consideration during surface treatment. 

The irreversibly bonded surfactant depends linearly on it [217].  

 As a result of the treatment the surface free energy of the filler decreases drastically 

[135,181,214,222]. Smaller surface tension means decreased wetting (see Fig. 11), interfacial 

tension and reversible work of adhesion [217]. Such changes in the thermodynamic quantities 

result in a decrease of both particle/particle and matrix/particle interaction. One of the main 

goals, major reason and benefit of non-reactive surface treatment is the first effect, i.e. to 

change interactions between the particles of fillers and reinforcements. As an effect of non-
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reactive treatment not only particle/particle, but matrix/filler interaction decreases as well. 

The consequence of this change is decreased yield stress and strength as well as improved 

deformability [135,215]. Strong interaction, however, is not always necessary or 

advantageous for the preparation of composites with desired properties; the plastic 

deformation of the matrix is the main energy absorbing process in impact, which increases 

with decreasing strength of adhesion [182,223-225].  

 

6.2. Coupling 

 Successful reactive treatment assumes that the coupling agent reacts and forms 

covalent bonds with both components. Silane coupling agents are successfully applied for 

fillers and reinforcements which have reactive –OH groups on their surface, e.g. glass fibers, 

glass flakes and beads, mica and other silica fillers [140,183,228,229]. The use of silanes 

with fillers like CaCO3, Mg(OH)2, wood flour, etc. were tried, but often proved to be 

unsuccessful [230,231]; sometimes contradictory results were obtained even with glass and 

other siliceous fillers [232]. Acidic groups are preferable for CaCO3, Mg(OH)2, Al(OH)3 and 

BaSO4. Talc cannot be treated successfully either with reactive or non-reactive agents 

because of its inactive surface; only broken surfaces contain a few active –OH groups.  

 The adsorption of organofunctional silanes is usually accompanied by their 

polycondensation. The adsorbed amount of coupling agent, the structure, properties and 

adhesion of the polysiloxane layer depend very much on the chemical composition of the 

organofunctional group of the silane. This is obvious if we compare the dissolution curve of 

two silanes, an aliphatic and an aminosilane, respectively, on CaCO3 (Fig. 13). The different 

chemical structure of the silanes leads to considerably different adsorption isotherms. The 

figure shows also that the simple dissolution technique can be advantageously applied for the 

study of reactive coupling agents as well [233].  

 Although the chemistry of silane modification of reactive silica fillers is well 
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documented, much less is known about the interaction of silanes with polymers. 

Thermoplastics rarely contain reactive groups, thus they cannot react chemically with silanes. 

Polycondensation polymers are the most reactive and literature sources offer sufficient 

evidence of reactive coupling, indeed. The strength of polyamide and polycarbonate 

composites increases on aminosilane treatment [234-236]. Reactive treatment is the most 

difficult in polyolefins, since they do not contain any reactive groups. Some results indicate 

that polypropylene oxidizes during processing even in the presence of stabilizers and the 

formed acidic groups react with aminosilanes resulting in reactive coupling [237].  

 Considering the complexity of the chemistry involved, it is not surprising that the 

amount of coupling agent and surface coverage have an optimum here too, similarly to 

surfactants in non-reactive surface treatment. The optimization of the type and amount of 

coupling agent is crucial also in reactive treatment and although "proprietary" coatings might 

lead to some improvement in properties, they are not necessarily optimal or cost effective. 

The improper choice of coupling agent may result in insufficient or even deteriorating effects. 

In some cases hardly any change is observed in properties, or the effect can be attributed 

unambiguously to the decrease of surface tension due to the coverage of the filler surface by 

an organic substance, i.e. to non-reactive treatment [219,220]. 

 

6.3. Functionalized polymers 

 The coverage of filler surface with a polymer layer which is capable of interdiffusion 

with the matrix proved to be very effective both in stress transfer and in forming a thick 

diffuse interphase with acceptable deformability. In this treatment the filler is usually covered 

by a functionalized polymer, preferably with the same chemical structure as the matrix. The 

functionalized polymer is attached to the surface of the filler by secondary, hydrogen, ionic 

and sometimes by covalent bonds. The polymer layer interdiffuses with the matrix, 

entanglements form and strong adhesion is created. Because of their polarity, in some cases 
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reactivity, maleic anhydride or acrylic acid modified polymers are often used for this 

purpose. The coupling agent adsorbs onto the surface of most polar fillers even from the melt. 

This treatment is frequently used in polyolefin composites, in which other treatments usually 

fail. Often very small amounts of modified polymer (1-3 wt%) are sufficient to achieve 

significant improvement in stress transfer [238,239]. The maximum effect of functionalized 

PP was found with fillers of high energy surfaces [232,241,242] or with those capable for 

specific interactions, e.g. ionic bond with CaCO3 [239,243] or chemical reaction with wood 

flour, kraft lignin or cellulose [238,240]. Fig. 14 demonstrates the successful use of 

functionalized polymer in PP composites modified with CaCO3 and wood flour, respectively.  

 

6.4. Soft interlayer 

 The introduction of hard particles into the polymer matrix creates stress 

concentration, which induces local micromechanical deformation processes. Occasionally 

these might be advantageous for increasing plastic deformation and impact resistance, but 

they usually deteriorate the properties of the composite. The encapsulation of the filler 

particles by an elastomer layer changes the stress distribution around the particles and 

modifies local deformation processes. Encapsulation can take place spontaneously, it can be 

promoted by the use of functionalized elastomers or the filler can be treated in advance. Such 

a surface modification is rarely done directly by covering the filler with a soft layer, but 

forms spontaneously during the preparation of multicomponent polymer/filler/elastomer 

composites [x]. 

 

7. MICROMECHANICAL DEFORMATIONS 

 The introduction of fillers or reinforcements into a polymer matrix results in a 

heterogeneous system. Under the effect of external load heterogeneities induce stress 

concentration, the magnitude of which depends on the geometry of the inclusions, the 
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elastic properties of the components and interfacial adhesion [244,245]. Heterogeneous 

stress distribution and local stress maxima initiate local micromechanical deformations, 

which determine the deformation and failure behavior, as well as the overall performance 

of the composites. Stress concentration and local stress distribution can be estimated by 

the use of theoretical models or by finite element analysis [56,246,247]. The interacting 

stress fields of neighboring particles are very complicated and change with composition. 

The most often used approach is the analysis of stresses around a single particle embedded 

in an infinite matrix, which was first proposed by Goodier [244]. According to his model 

radial stress has a maximum at the pole, where it exceeds almost twice the external stress. 

Micromechanical deformation processes initiated by local stress maxima around the 

particles are influenced also by thermal stresses induced by the different thermal 

expansion coefficients of the components, crystallization, or shrinkage during the curing 

of thermoset matrices [142,143]. Although the importance of inhomogeneous stress 

distribution developing in particulate filled composites is pointed out in numerous 

publications, the exact role of stress concentration is not completely clear and 

contradictory information is poublished claiming either beneficial [254], neutral [255] or 

detrimental effect on properties [63,195]. 

 In particulate filled polymers the dominating micromechanical deformation process is 

debonding. The stress necessary to initiate debonding, the number of debonded particles and 

the size of the voids formed all influence the macroscopic properties of composites. Several 

models exist for the prediction of debonding stress including the one below [56] 
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where D and T are debonding and thermal stresses, respectively, WAB is the reversible 

work of adhesion and R denotes the radius of the particle. C1 and C2 are constants which 

depend on the geometry of the debonding process. The validity of the model was checked 
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in various particulate filled composites. Initiation stress determined in PP/CaCO3 

composites from volume strain measurements is plotted against the stiffness of the matrix 

in Fig. 15 in the representation predicted by the model [253]. The correlation is close and 

corresponds to the prediction. Similarly good correlations can be obtained if we plot 

debonding stress against the reversible work of adhesion [259] or the particle size of the 

filler [252] (see Eq. 9). 

 Micromechanical deformations are competitive processes and the dominating one 

depends on material properties and loading conditions. Several fiber related processes, like 

fiber breakage, pull out, buckling, etc. may take place in short and long fiber reinforced 

composites. Quite a few of these can be observed also in wood fiber reinforced polymers 

or layered silicate nanocomposites as well. The complexity of deformation and failure in 

such materials is demonstrated well by the number of processes detected in wood flour 

reinforced PP composites [116]. The stress vs. strain correlation of a PP composite 

containing 20 wt% unmodified wood flour is presented in Fig. 16 together with the 

acoustic signals detected during deformation. Since the adhesion between wood and PP is 

poor and the particles are large, the majority of the signals is emitted by the debonding of 

the wood particles. The cumulative number of acoustic events vs. elongation plot clearly 

indicates that at least two processes occur in this composite shown by the two steps in the 

correlation. The application of a coupling agent, which improves interfacial adhesion 

between the components changes the mechanism of deformation completely, the fracture 

of the fibers dominate under those conditions. The analysis of a large number of results 

showed that at least four processes take place during the deformation of PP/wood 

composites. The PP matrix deforms mainly by shear yielding, debonding and fiber pull out 

dominates when the adhesion is poor, while mainly fiber fracture takes place in the 

presence of MAPP coupling agent, which create strong bond between the matrix and the 

wood particles. The fracture and the fibrillation of a particle are shown in Fig. 17 in order 
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to support the analysis. The importance of local deformations is strongly supported by Fig. 

18 in which composites strength is plotted against the initiation stress of the dominating 

process of a large number of PP and PLA composites reinforced with wood. It is obvious 

that micromechanical processes initiated by local stress maxima determine the final 

properties of particulate filled and reinforced composites and only the analysis of the 

resulting processes can help the development of stronger and better materials. 

 

8. PROPERTIES 

 The properties of particulate filled thermoplastics depend strongly and usually non-

linearly on composition. Models are needed for the prediction of properties in order to 

produce composites with desired characteristics. Relatively few models exist for the 

prediction of the effect of filler content on properties and the majority of these are 

empirical equations.  

 

8.1. Rheological properties  

 The introduction of fillers or reinforcements changes practically all properties of 

the polymer including its rheological characteristics. Viscosity usually increases with filler 

content, while melt elasticity decreases at the same time [270,271]. These changes depend 

very much on the particle characteristics of the filler although unambiguous correlations 

are not known. Matrix/filler interactions lead to the formation of an interphase and has the 

same effect as increasing filler content [185]. 

 The composition dependence of rheological properties is modeled only in 

surprisingly few cases. Quite a few models are derived from Einstein's equation, which 

predicts the composition dependence of the viscosity of suspensions containing spherical 

particles. The original equation is valid only at infinite dilution, or at least at very small, 1-

2 %, concentrations [272] and in real composites the equation must be modified. Usually 
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additional terms and parameters are introduced into the model most often in the form of a 

power series [271,272]. The Mooney equation represents a more practical and useful 

approach which contains adjustable parameters accommodating both the effect of 

interaction and particle anisotropy [272,273], i.e. 
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where  and 0 are the viscosity of the composite and the matrix, respectively,  the 

volume fraction of the filler, while kE is an adjustable parameter related to the shape of the 

particles. f
max is the maximum amount of filler, which can be introduced into the 

composite, i.e. maximum packing fraction, and it is claimed to depend solely on the spatial 

arrangement of the particles. The study of PP/CaCO3 composites proved that interfacial 

interactions and the formation of a stiff interface influences its value more than spatial 

arrangement and the maximum amount of filler which can be introduced into the polymer 

decreases with increasing specific surface area of the filler.  

 

8.2. Stiffness 

 Modulus is one of the basic properties of composites and the goal of using 

particulate fillers is often to increase it [75,239]. Modulus is not only the most frequently 

measured, but also the most often modeled composite property. A large number of models 

exist which predict the composition dependence of stiffness or give at least some bounds 

for its value. The abundance of models is relatively easy to explain: modulus is determined 

at very low deformations thus the theory of linear viscoelasticity can be used in model 

equations. The large number of accessible data also helps both the development and the 

verification of models. Model equations developed for heterogeneous polymer systems 

can be classified in different ways [277-279]. Ignoring completely empirical correlations, 

we distinguish four groups here: 
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1. Phenomenological equations which are similar to the spring and dashpot models used 

for the description of the viscoelastic properties of polymers [XX]. 

2. Bounds. These are usually exact mathematical solutions which do not contain any or 

only very limited assumptions about the structure of the composite [YY]. 

3. Self-consistent models. The mechanical response of a composite structure is calculated 

in which the dispersed particle is assumed to be embedded into the continuous phase. 

A well known model of this type, frequently used also for particulate filled 

composites, is the Kerner equation [277-279]. Although it was much criticized because 

of the incorrect elastic solution used [280], the model gained wide use and acceptance. 

4. Semiempirical models. In spite of the effort of the self-consistent models to take into 

account the influence of microstructure, they very often fail to predict correctly the 

composition dependence of composite modulus, thus additional, adjustable parameters 

are introduced in order to improve their performance. The most often applied equation 

of this type is the Nielsen (also called Lewis-Nielsen or modified Kerner) model 

[59,285]. 
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where G, Gm and Gf are the shear moduli of the composite, the matrix and the filler, 

respectively, m is the Poisson’s ratio of the matrix and f is filler content. The equation 

contains two structure related or adjustable parameters (A, ). The two parameters, 
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however, are not very well defined. A can be related to filler anisotropy, through the 

relation A = kE-1, where kE is Einstein's coefficient, but the relation has not been 

thoroughly investigated and verified.  depends on maximum packing fraction. f
max is 

related to anisotropy, but it is influenced also by the formation of an interphase which was 

not taken into consideration in the original treatment [59]. Its experimental determination 

is difficult. McGee and McCullogh proposed a different form for , which is supposed to 

be based on a more rigorous treatment [277]. 

 In spite of these uncertainties the model is quite frequently used in all kinds of 

particulate filled composites for the prediction of the composition dependence of modulus. 

In some cases merely the existence of a good fit is established, in others conclusions are 

drawn from the results about the structure of the composite. However, the attention must 

be called here to some problems of the application of these equations or any other 

theoretical model. The uncertainty of input parameters might bias the results considerably. 

Poisson’s ratios between 0.25 and 0.30, as well as moduli between 19.5 and 50 GPa have 

been reported for CaCO3 [12, 246, 282]. Such changes in component properties may lead 

to differences in the final prediction which exceed the standard deviation of the 

measurement. Maximum packing fraction influences predicted moduli especially strongly, 

but its value is usually not known. A certain packing of the particles may be assumed, but 

this approach neglects the effect of particle size distribution and interactions. At the 

moment the best solution is the fitting of the equation to the experimental data and the 

determination of A and f
max. The model is very useful for the estimation of the amount of 

embedded filler in polymer/elastomer/filler composites [263], but otherwise its value is 

limited. 

 

8.3. Properties measured at large deformations 

 The fact that modulus is determined at very low deformations simplifies both 
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measurements and modeling. On the other hand, yield properties are measured at larger 

deformations making predictions much more difficult. The composition dependence of 

yield strain is described assuming that at the considerable deformations (5-10 %) of 

yielding only the polymer matrix deforms and the rigid filler does not. This strain 

magnification of the matrix increases with increasing filler content. One of the equations 

based on this principle was derived by Nielsen [59]. Occasionally the same approach is 

used for the prediction of the composition dependence of elongation-at-break [59,195].  

 More attempts are made to predict and analyze yield stress. The most often applied 

correlation is attributed to Nicolais and Narkis [285], although the equation of Ishai and 

Cohen [286] is practically the same. Nicolais and Narkis [285] assumed that the filler 

decreases the effective cross-section of the matrix which carries the load during 

deformation. Assuming a certain arrangement of the particles they calculated this cross-

section and from that the dependence of yield stress on composition, i.e. 
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where y and y0 are composite and matrix yield stress, respectively. The approach, 

however, results in a matrix cross-section assuming zero value at f < 1 which is naturally 

incorrect. The model assumes zero interaction and ignores all other factors influencing 

yield stress. Because of these simplifications, deviations from the prediction occur very 

often. As a consequence, the model is frequently modified to accommodate the effect of 

different arrangements of the particles [59], interactions, stress concentration [195,256], or 

other effects. Usually the two constants, i.e. 1.21 and 2/3, are treated as adjustable 

parameters, but in such cases they lose their physical meaning and the entire approach 

becomes invalid.  

 Another model [54] takes into account at least some of the factors neglected by 

Nicolais and Narkis [285]. The model applies a different expression for the effective load-
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bearing cross-section [287] and takes into account also the influence of interfacial 

interactions and interphase formation 
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where B is related to the relative load-bearing capacity of the components, i.e. to 

interaction. A detailed analysis has shown that B accounts both for changes in interfacial 

area and for the strength of interaction through the expression 
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where Af and f are the specific surface area and density of the filler, while ℓ and yi are 

the thickness of the interphase and its yield stress, respectively. The correlation proved to 

be valid for most particulate filled systems [54,135,209]. The rearrangement of Eq. 16 

eliminates the effect of changing matrix cross-section and if the natural logarithm of 

relative yield stress, i.e. yrel = y(1 + 2.5f)/y0(1 - f) is plotted against the volume 

fraction of the filler, straight lines should be obtained. The validity of the approach is 

proved by Fig. 19, in which the relative yield stress of the PP/CaCO3 composites of Fig. 

10 is plotted in the linear form. The change in the slope of the straight line indicates the 

effect of interfacial area (Af), which increases with decreasing particle size, i.e. with 

increasing amount of interphase formed (see Eq. 17). Parameter B measures quantitatively 

changes in the strength of interactions achieved by surface modification. 

 The composition dependence of ultimate tensile properties, i.e. tensile strength and 

elongation-at-break is very similar to that of the yield characteristics. Usually both 

elongation and strength decrease with increasing filler content [111,288], although 

occasionally some reinforcement can be observed, too. However, changes in elongation 

with filler content make the prediction of strength difficult; the cross-section of the 

specimen decreases at large elongations, while the orientation of the matrix results in 
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strain hardening. The modification of Eq. 16 successfully copes with these problems, i.e. 
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where true tensile strength (T = ,  = L/L0, relative elongation) accounts for the change 

in specimen cross-section and n for strain hardening. n characterizes the strain hardening 

tendency of the polymer and can be determined from matrix properties [54]. B is defined 

by a correlation similar to Eq. 17, but its value is naturally different from that determined 

from the composition dependence of yield stress.  

 Fracture and especially impact resistance are crucial properties of all materials used in 

engineering applications. Similarly to yield stress, the fracture toughness of particulate filled 

polymers is assumed to decrease with filler content, which is not necessarily true. Fracture 

and impact resistance often increases or goes through a maximum as a function of filler 

content both in thermoplastic and thermoset matrices [284,292]. Several micromechanical 

deformation processes take place during the deformation and fracture of heterogeneous 

polymer systems. New deformation processes initiated by heterogeneities always consume 

energy resulting in an increase of fracture resistance. The various deformation mechanisms 

consumption different amount of energy, thus the change of properties and composition 

dependence may also vary according to the actual processes taking place during deformation. 

Deformation mechanisms leading to increased plastic deformation of the matrix are the most 

efficient in improving fracture and impact resistance. Because of the effect of a large number 

of factors influencing fracture resistance and due to the increased role of micromechanical 

deformation processes, the modeling of this property is even more difficult than that of other 

composite characteristics. Nevertheless, a relatively large number of models have been 

published up to now [294-299], but very few of them gained wide acceptance. The semi-

empirical model applied for the description of the composition dependence of other 

mechanical properties (see Eqs. 16-18) can be extended also to fracture and impact resistance 
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[182]. The model could be used successfully for a large number of composites both with 

thermoplastic and thermoset matrices. 

 

 

8.4. Other properties 

 Particulate filled and reinforced polymers are frequently used in structural 

applications and the main goal of modification is often the improvement of stiffness. As a 

consequence, much attention is paid to the study and modeling of mechanical properties, but 

other characteristics of the composites are investigated much less and relatively few attempts 

are made to describe their composition dependence by models. Heat deflection temperature 

(HDT) is closely related to stiffness and changes with composition in a similar way. Cost is 

an important attribute of every engineering material and it usually decreases with increasing 

filler content. However, decreasing polymer prices and increasing compounding costs make 

particulate filled polymers competitive only if their technical benefits are utilized in their full 

extent. The introduction of fillers may change the appearance of the product (color, surface) 

or influence the stability of the compound. Heat capacity, heat conductivity, shrinkage, and 

dielectric properties can be described quantitatively by models used for the description of the 

composition dependence of modulus. Fillers influence the barrier properties of polymers, the 

permeation of gases and vapors decreases with increasing filler content. Models exist for the 

description of this phenomenon [300-304], which take into account the tortuosity of the 

diffusion path.  

 The inherent flammability of plastics is one of their major drawbacks and the use of 

flame retardants is required today in most applications, especially in construction or 

transportation. Traditional halogen/antimony flame retardants are very efficient, but their use 

will be banned in the future because of environmental and health considerations. One of the 

alternatives is the use of hydrated mineral fillers, like aluminium or magnesium hydroxides 
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[305]. These can provide acceptable levels of frame retardancy without the formation of 

smoke or corrosive and toxic gases. Unfortunately, these minerals must be used in large 

quantities in order to achieve the necessary effect, which deteriorates other properties, like 

processability, strength and especially impact resistance. Appropriate surface modification 

must be used in order to overcome the negative effect of large filler content.  

 Polymers are basically insulators with surface resistivity of around 1014 - 1018 cm. 

Applications exist which require a certain conductivity, like air ducts in mines, pipes for 

solvent transport, EMI shielding and some other areas. Conductivity is usually achieved by 

the introduction of conductive fillers. Traditionally special conductive carbon blacks or metal 

fillers, particles or flakes, are used in such applications, but recently intensive research is 

going on to use carbon nanofibers or nanotubes for this purpose [306,307]. Conductivity 

increases stepwise at a certain additive content, and the percolation threshold is claimed to be 

much smaller, around several tenth of a weight percent [306,307], for nanofillers than for 

traditional fillers. This claim is strongly supported by the results of Pötschke et al. [306,307] 

presented in Fig. 20. The percolation threshold of the special conducting carbon black is 

around 8 wt% in polycarbonate, while that of single walled nanotube is less than one percent 

in the same polymer, indeed. Such behavior can be described and the composition 

dependence of conductivity can be modeled with percolation theories [308,309]. 

 

9. CONCLUSIONS 

 Although particulate filled polymer composites are mature materials with a long 

history of application, their structure-property correlations are more complicated than usually 

assumed. The characteristics of all heterogeneous polymer systems including composites 

containing micro or nano fillers are determined by four factors: component properties, 

composition, structure and interfacial interactions. Several filler characteristics influence 

composite properties, but the most important ones are particle size, size distribution, specific 
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surface area and particle shape. The main matrix property is stiffness. Composite properties 

usually depend non-linearly on composition, thus they must be always determined as a 

function of filler content. The structure of particulate filled polymers is often more 

complicated than expected, segregation, aggregation and the orientation of anisotropic 

particles may take place. Interfacial interactions invariably develop in composites; they lead 

to the formation of a stiff interphase considerably influencing properties. Interactions can be 

modified by surface treatment, which must be always system specific and selected according 

to the goal of modification. Particulate filled polymers are heterogeneous materials in which 

inhomogeneous stress distribution and stress concentration develop under the effect of 

external load. These initiate local micromechanical deformation processes, which determine 

the macroscopic properties of the composites. The dominating deformation mechanism is 

usually debonding in filled polymers. Although the number of reliable models to predict 

properties is relatively small, they offer valuable information about structure and interactions 

in particulate filled composites.  
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Table 1 Consumption of particulate fillers in Europe in 2007 [6] 
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Filler Amount (ton) 

Carbon black 2,000,000 

Natural calcium carbonate and dolomite 1,500,000 

Aluminium hydroxide 250,000 

Precipitated silica 225,000 

Talc 200,000 

Kaolin and clay 200,000 

Fumed silica 100,000 

Cristobalite, quartz 100,000 

Precipitated calcium carbonate 75,000 

Calcined clay 50,000 

Magnesium hydroxide 20,000 

Wollastonite 20,000 

Wood flour and fiber 20,000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Surface tension of selected polymers and fillers; dispersion (d) and polar (p) 
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components 

 

Material Surface tension (mJ/m2) 

d p  

PPa 32.5     0.9   33.4 

PMMAa 34.3     5.8   40.1 

CaCO3
b 54.5 153.4 207.9 

talcc 49.3   90.1 139.4 

SiO2c 94.7 163.0 257.7 

 
acontact angle, bIGC, cgravimetric measurement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Interphase thickness in particulate filled polymers determined by different 
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techniques 

 

Matrix 

polymer 

Filler Method of 

determination 
Thickness (m) Reference 

HDPE SiO2 extraction 0.0036 201 

HDPE SiO2 " 0.0036 199 

PP SiO2 " 0.0041 199 

PP graphite model calc. 0.001 200 

PS mica dyn. mech. meas. 0.06 202 

PMMA glass dyn. mech. meas. 1.4 202 

PP CaCO3 Young’s modulus 0.012 208 

PP CaCO3 tensile strength 0.15 208 

PP CaCO3 tensile yield stress 0.16 208 

PP CaCO3 tensile yield stress 0.12 207 

LDPE CaCO3 tensile yield stress 0.11 207 

PMMA CaCO3 tensile yield stress 0.18 207 

PVC CaCO3 tensile yield stress 0.23 207 

 

 

 

 

 

 

 

 

 

 

11. CAPTIONS 

Fig. 1 Effect of matrix properties on the tensile yield stress of particulate filled 

composites. Particle size of CaCO3, R = 1.8 μm. 
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Fig. 2 Particle size distributions of fillers showing a tendency for agglomeration. 

Dependence of distribution on the method of determination. 

Fig. 3 Effect of filler anisotropy on the flexural modulus of PP composites [9 long]. 

Fig. 4 Correlation between the heat of crystallization and yield stress of PP/CaCO3 

composites [36 KeKo 2]. 

Fig. 5 Strength of PP/CaCO3 composites plotted as a function of the specific surface 

area of the filler. Effect of aggregation. 

Fig. 6 Initiation and propagation of a crack through an aggregate of CaCO3 particles 

in a PP composite. 

Fig. 7 Effect of fiber orientation (alignment to external stress) on the strength of 

short glass fiber reinforced PP composites [162 long]. 

Fig. 8 Effect of interfacial adhesion on the tensile yield stress of PP/CaCO3 

composites; filler: CaCO3, f = 0.1, R = 0.9 μm. 

Fig. 9 Effect of interfacial interactions on the thickness of the interlayer formed 

spontaneously in polymer/CaCO3 composites. 

Fig. 10 Effect of the size of the interfacial area on the yield stress of PP/CaCO3 

composites.  

Fig. 11 Wettability of CaCO3 by PP and its dependence on the surface coverage of 

the filler with stearic acid. 

Fig. 12 Dissolution curve used for the determination of surfactant adsorption on a 

filler. CaCO3/stearic acid. 

Fig. 13 Effect of the chemical structure of silane coupling agents on their adsorption 

on the surface of a CaCO3 filler. Particle size 1.25 μm. 

 

Fig. 14 Effect of the interdiffusion of the functionalized polymer with the matrix on 

the mechanical properties of PP/cellulose composites. 
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Fig. 15 Dependence of debonding stress derived from volume strain measurements 

on the stiffness of the matrix (see Eq. 11).  

Fig. 16 Acoustic activity expressed as the cumulative number of acoustic events for 

neat PP (---------) and for a composite containing 20 wt% wood without 

MAPP (poor adhesion) ().  

Fig. 17 SEM micrograph showing the fracture of a wood particle during the 

deformation of PP/wood composites. Good adhesion of the components 

was achieved by the use of functionalized MAPP (Licomont AR 504). 

Fig. 18  vs. AE – PP, PLA általános 

Fig. 19 Relative tensile yield stress of the PP/CaCO3 composites presented in Fig. 11 

plotted against composition in the linear representation of Eq. 19. Symbols 

are the same as in Fig. 11. 

Fig. 20  Comparison of the effect of carbon black (CB), multiwalled (MWCNT) and 

single walled carbon nanotubes (SWCNT) on the conductivity of 

polycarbonate composites. 

 

 

 

 

 

 

 

 

 

Móczó, Fig. 1 
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Móczó, Fig. 2 
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Móczó, Fig. 9 
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Móczó, Fig. 17 
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Móczó, Fig. 19 
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