899 research outputs found
Geometrical aspects of integrable systems
We review some basic theorems on integrability of Hamiltonian systems, namely
the Liouville-Arnold theorem on complete integrability, the Nekhoroshev theorem
on partial integrability and the Mishchenko-Fomenko theorem on noncommutative
integrability, and for each of them we give a version suitable for the
noncompact case. We give a possible global version of the previous local
results, under certain topological hypotheses on the base space. It turns out
that locally affine structures arise naturally in this setting.Comment: It will appear on International Journal of Geometric Methods in
Modern Physics vol.5 n.3 (May 2008) issu
Flux creep in Bi2Sr2Ca1Cu2O(8+x) single crystals
Dissipative effects were investigated in Bi2Sr2Ca1Cu2O(8+x) single crystals by critical current and magnetic relaxation measurements. Activation energies for the flux motion were determined from the temperature dependence of the critical current and from the time decay of the zero field cooled and the remanent magnetization. The effective activation energy was found to increase with temperature, in agreement with the existence of a distribution of activation energies (E sub o 20 meV at 4.2 K for H + 10 kOe applied parallel to the c-axis.)
Flux creep in Bi2Sr2CaCu2O8(sub +x) single crystals
The results of a magnetic study on a Bi2Sr2CaCu2O(8+x) single crystal are reported. Low field susceptibility (dc and ac), magnetization cycles and time dependent measurements were performed. With increasing the temperature the irreversible regime of the magnetization cycles is rapidly restricted to low fields, showing that the critical current J(sub c) becomes strongly field dependent well below T(sub c). At 2.4 K the critical current in zero field, determined from the remanent magnetization by using the Bean formula for the critical state, is J(sub c) = 2 10(exp 5) A/sq cm. The temperature dependence of J(sub c) is satisfactorily described by the phenomenological law J(sub c) = J(sub c) (0) (1 - T/T(sub c) (sup n), with n = 8. The time decay of the zero field cooled magnetization and of the remanent magnetization was studied at different temperatures for different magnetic fields. The time decay was found to be logarithmic in both cases, at least at low temperatures. At T = 4.2 K for a field of 10 kOe applied parallel to the c axis, the average pinning energy, determined by using the flux creep model, is U(sub o) = 0.010 eV
First-time lidar measurement of water vapor flux in a volcanic plume
The CO2 laser-based lidar ATLAS has been used to study the Stromboli volcano plume. ATLAS measured water
vapor concentration in cross-sections of the plume and wind speed at the crater. Water vapor concentration
and wind speed were retrieved by differential absorption lidar and correlation technique, respectively. Lidar
returns were obtained up to a range of 3 km. The spatial resolution was 15 mand the temporal resolution was
20 s. By combining these measurements, the water vapor flux in the Stromboli volcano plume was found. To
our knowledge, it is the first time that lidar retrieves water vapor concentrations in a volcanic plume.Published1295–12981.10. TTC - TelerilevamentoJCR Journalreserve
Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique
The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavior of the nanoparticles, with weak interactions slightly increasing with the cobalt ferrite content and with the particle size. From high-field Mossbauer spectra at low temperatures, the cationic distribution and the degree of spin canting have been estimated and both parameters are only slightly dependent on the particle size. The magnetic anisotropy constant increases with decreasing particle size, but in contrast to many other systems, the cobalt ferrite nanoparticles are found to have an anisotropy constant that is smaller than the bulk value. This can be explained by the distribution of the cations. The weak dependence of spin canting degree on particle size indicates that the spin canting is not simply a surface phenomenon but also occurs in the interiors of the particles. (c) 2006 American Institute of Physics
Magnetic properties of the frustrated AFM spinel ZnCr_2O_4 and the spin-glass Zn_{1-x}Cd_xCr_2O_4 (x=0.05,0.10)
The -dependence (2- 400 K) of the electron paramagnetic resonance (EPR),
magnetic susceptibility, , and specific heat, , of the
antiferromagnetic (AFM) spinel ZnCrO and the spin-glass
(SG) ZnCdCrO () is reported. These
systems behave as a strongly frustrated AFM and SG with K and -400 K K. At high-
the EPR intensity follows the and the -value is -independent.
The linewidth broadens as the temperature is lowered, suggesting the existence
of short range AFM correlations in the paramagnetic phase. For
ZnCrO the EPR intensity and decreases below 90 K and 50
K, respectively. These results are discussed in terms of nearest-neighbor
Cr (S %) spin-coupled pairs with an exchange coupling of 50 K. The appearance of small resonance modes for K,
the observation of a sharp drop in and a strong peak in
at K confirms, as previously reported, the existence of long range
AFM correlations in the low- phase. A comparison with recent neutron
diffraction experiments that found a near dispersionless excitation at 4.5 meV
for and a continuous gapless spectrum for ,
is also given.Comment: 17 pages, 8 figures, 1 Table. Submitted to Physical Review
Edge Tunneling of Vortices in Superconducting Thin Films
We investigate the phenomenon of the decay of a supercurrent due to the
zero-temperature quantum tunneling of vortices from the edge in a thin
superconducting film in the absence of an external magnetic field. An explicit
formula is derived for the tunneling rate of vortices, which are subject to the
Magnus force induced by the supercurrent, through the Coulomb-like potential
barrier binding them to the film's edge. Our approach ensues from the
non-relativistic version of a Schwinger-type calculation for the decay of the
2D vacuum previously employed for describing vortex-antivortex pair-nucleation
in the bulk of the sample. In the dissipation-dominated limit, our explicit
edge-tunneling formula yields numerical estimates which are compared with those
obtained for bulk-nucleation to show that both mechanisms are possible for the
decay of a supercurrent.Comment: REVTeX file, 15 pages, 1 Postscript figure; to appear in Phys.Rev.
Exchange bias effect in the phase separated Nd_{1-x}Sr_{x}CoO_3 at the spontaneous ferromagnetic/ferrimagnetic interface
We report the new results of exchange bias effect in Nd_{1-x}Sr_{x}CoO_3 for
x = 0.20 and 0.40, where the exchange bias phenomenon is involved with the
ferrimagnetic (FI) state in a spontaneously phase separated system. The
zero-field cooled magnetization exhibits the FI (T_{FI}) and ferromagnetic
(T_C) transitions at ~ 23 and \sim 70 K, respectively for x = 0.20. The
negative horizontal and positive vertical shifts of the magnetic hysteresis
loops are observed when the system is cooled through T_{FI} in presence of a
positive static magnetic field. Training effect is observed for x = 0.20, which
could be interpreted by a spin configurational relaxation model. The
unidirectional shifts of the hysteresis loops as a function of temperature
exhibit the absence of exchange bias above T_{FI} for x = 0.20. The analysis of
the cooling field dependence of exchange bias field and magnetization indicates
that the ferromagnetic (FM) clusters consist of single magnetic domain with
average size around \sim 20 and ~ 40 \AA ~ for x = 0.20 and 0.40, respectively.
The sizes of the FM clusters are close to the percolation threshold for x =
0.20, which grow and coalesce to form the bigger size for x = 0.40 resulting in
a weak exchange bias effect.Comment: 9 pages, 9 figure
Re-entrant spin glass and magnetoresistance in Co_{0.2}Zn_{0.8}Fe_{1.6}Ti_{0.4}O_4 spinel oxide
We have investigated the static and dynamic response of magnetic clusters in
Co_{0.2}Zn_{0.8}Fe_{1.6}Ti_{0.4}O_4 spinel oxide, where a sequence of magnetic
phase transitions, i.e., paramagnetic (PM) to ferromagnetic at T_{C}
270K and ferromagnetic to canted spin glass state at T_f\leq$ 125K is
observed
Millikelvin magnetic relaxation measurements of alpha-Fe2O3 antiferromagnetic particles
In this paper we report magnetic relaxation data for antiferromagnetic
alpha-Fe2O3 particles of 5 nm mean diameter in the temperature range 0.1 K to
25 K. The average spin value of these particles S=124 and the uniaxial
anisotropy constant D=1.6x10^-2 K have been estimated from the experimental
values of the blocking temperature and anisotropy field. The observed plateau
in the magnetic viscosity from 3 K down to 100 mK agrees with the occurrence of
spin tunneling from the ground state Sz = S. However, the scaling M vs Tln(nu
t) is broken below 5 K, suggesting the occurrence of tunneling from excited
states below this temperature.Comment: 4 pages (two columns), 4 figure
- …
