128 research outputs found

    On ozone correlation with meteofields in the Northern Hemisphere

    Get PDF
    The correlation coefficients of temperature and geopotential heights at various levels with total ozone and its vertical distribution have been analyzed, using the ground based and ozone sounding data. Two independent groups of factors affect total ozone. The first group - the geopotential values of the troposphere - stratosphere border (100-500 mb) manifest themselves most of all in the middle latitudes. Pertaining to this group is the total ozone correlation with the tropopause height and temperature at 500 mb. The correlation coefficients are negative (-0.55 -0.65) and little depend on the season. Related to this factor is a high (up to 0.8) correlation of ozone partial pressure with the temperature in the lower stratosphere. The second group is the geopotential and temperature values at the 10-30 mb coefficients (up to 0.6) are observed in winter in the subpolar latitudes. In summer they are substantially lower - about 0.1

    Trend and variability in ozone in the tropical lower stratosphere over 2.5 solar cycles observed by SAGE II and OSIRIS

    Get PDF
    We have extended the satellite-based ozone anomaly time series to the present (December 2012) by merging SAGE II (Stratospheric Aerosol and Gas Experiment II) with OSIRIS (Optical Spectrograph and Infrared Imager System) and correcting for the small bias (~0.5%) between them, determined using their temporal overlap of 4 years. Analysis of the merged data set (1984–2012) shows a statistically significant negative trend at all altitudes in the 18–25 km range, including a trend of (−4.6 ± 2.6)% decade<sup>−1</sup> at 19.5 km where the relative standard error is a minimum. We are also able to replicate previously reported decadal trends in the tropical lower-stratospheric ozone anomaly based on SAGE II observations. Uncertainties are smaller on the merged trend than the SAGE II trend at all altitudes. Underlying strong fluctuations in ozone anomaly due to El Niño–Southern Oscillation (ENSO), the altitude-dependent quasi-biennial oscillation, and tropopause pressure need to be taken into account to reduce trend uncertainties and, in the case of ENSO, to accurately determine the linear trend just above the tropopause. We also compare the observed ozone trend with a calculated trend that uses information on tropical upwelling and its temporal trend from model simulations, tropopause pressure trend information derived from reanalysis data, and vertical profiles from SAGE II and OSIRIS to determine the vertical gradient of ozone and its trend. We show that the observed trend agrees with the calculated trend and that the magnitude of the calculated trend is dominated by increased tropical upwelling, with minor but increasing contribution from the vertical ozone gradient trend as the tropical tropopause is approached. Improvements are suggested for future regression modelling efforts which could reduce trend uncertainties and biases in trend magnitudes, thereby allowing accurate trend detection to extend below 18 km

    A global catalogue of large SO \u3c inf\u3e 2 sources and emissions derived from the Ozone Monitoring Instrument

    Get PDF
    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr-1 to more than 4000 kt yr-1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005-2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr-1 and not detected by OMI

    A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Get PDF
    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such as the spring ozone maximum over the Canadian Arctic. It also covers higher latitudes than current satellite data. The climatology shows clearly the depletion of ozone from the 1970s to the mid 1990s and ozone recovery in the 2000s. When this climatology is used as the upper boundary condition in an Environment Canada operational chemical forecast model, the forecast is improved in the vicinity of the upper tropospherelower stratosphere region. As this ozone climatology is neither dependent on a priori data or photochemical modeling, it provides independent information and insight that can supplement satellite data and model simulations and enhance our understanding of stratospheric ozone

    Performance of the ground-based total ozone network assessed using satellite data

    Get PDF
    Dobson and Brewer spectrophotometer and filter ozonometer data available from the World Ozone and Ultraviolet Data Centre (WOUDC) were compared with satellite total ozone measurements from TOMS (onboard Nimbus 7, Meteor 3, and Earth Probe satellites), OMI (AURA satellite) and GOME (ERS-2 satellite) instruments. Five characteristics of the difference with satellite data were calculated for each site and instrument type: the mean difference, the standard deviation of daily differences, the standard deviation of monthly differences, the amplitude of the seasonal component of the difference, and the range of annual values. All these characteristics were calculated for five 5-year-long bins and for each site separately for direct sun (DS) and zenith sky (ZS) ozone measurements. The main percentiles were estimated for the five characteristics of the difference and then used to establish criteria for “suspect” or “outlier” sites for each characteristic. About 61% of Dobson, 46% of Brewer, and 28% of filter stations located between 60°S and 60°N have no “suspect” or “outlier” characteristics. In nearly 90% of all cases, Dobson and Brewer sites demonstrated 5-year mean differences with satellites to be within ±3% (for DS observations). The seasonal median difference between all Brewer DS measurements at 25°–60°N and GOME and OMI overpasses remained within ±0.5% over a period of more than 10 years (...
    corecore