297 research outputs found

    Supporting the development of a health benefits package in Malawi

    Get PDF
    Malawi, like many low-income and middle-income countries, has used health benefits packages (HBPs) to allocate scarce resources to key healthcare interventions. With no widely accepted method for their development, HBPs often promise more than can be delivered, given available resources. An analytical framework is developed to guide the design of HBPs that can identify the potential value of including and implementing different interventions. It provides a basis for informing meaningful discussions between governments, donors and other stakeholders around the trade-offs implicit in package design. Metrics of value, founded on an understanding of the health opportunity costs of the choices faced, are used to quantify the scale of the potential net health impact (net disability adjusted life years averted) or the amount of additional healthcare resources that would be required to deliver similar net health impacts with existing interventions (the financial value to the healthcare system). The framework can be applied to answer key questions around, for example: the appropriate scale of the HBP; which interventions represent 'best buys' and should be prioritised; where investments in scaling up interventions and health system strengthening should be made; whether the package should be expanded; costs of the conditionalities of donor funding and how objectives beyond improving population health can be considered. This is illustrated using data from Malawi. The framework was successfully applied to inform the HBP in Malawi, as a core component of the country's Health Sector Strategic Plan II 2017-2022

    Recommendations for the development of a health sector resource allocation formula in Malawi

    Get PDF
    This report describes a spreadsheet tool designed to inform the allocation of health service funding to district councils in Malawi. The methods seek to allocate funds between districts so as to provide the opportunity of securing equal access to services for equal need for the interventions contained in Malawi's Essential Health Package (EHP). The relevant funding streams for allocation relate to the available budgets for drugs and other recurrent transactions (ORT), but excludes costs relating to personnel

    Adapting Economic Evaluation Methods to Shifting Global Health Priorities : Assessing the Value of Health System Inputs

    Get PDF
    OBJECTIVES: We highlight the importance of undertaking value assessments for health system inputs if allocative efficiency is to be achieve with health sector resources, with a focus on low- and middle-income countries. However, methodological challenges complicated the application of current economic evaluation techniques to health system input investments. METHODS: We undertake a review of the literature to examine how assessments of investments in health system inputs have been considered to date, highlighting several studies that have suggested ways to address the methodological issues. Additionally, we surveyed how empirical economic evaluations of health system inputs have approached these issues. Finally, we highlight the steps required to move toward a comprehensive standardized framework for undertaking economic evaluations to make value assessments for investments in health systems. RESULTS: Although the methodological challenges have been illustrated, a comprehensive framework for value assessments of health system inputs, guiding the evidence required, does not exist. The applied literature of economic evaluations of health system inputs has largely ignored the issues, likely resulting in inaccurate assessments of cost-effectiveness. CONCLUSIONS: A majority of health sector budgets are spent on health system inputs, facilitating the provision of healthcare interventions. Although economic evaluation methods are a key component in priority setting for healthcare interventions, such methods are less commonly applied to decision making for investments in health system inputs. Given the growing agenda for investments in health systems, a framework will be increasingly required to guide governments and development partners in prioritizing investments in scarce health sector budgets

    Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer

    Get PDF
    Hormone therapy targeting estrogen receptor (ER) is the principal treatment for ER-positive breast cancers. However, many cancers develop resistance to hormone therapy while retaining ER expression. Identifying new druggable mediators of ER function can help to increase the efficacy of ER-targeting drugs. Cyclin-dependent kinase 8 (CDK8) is a Mediator complex-associated transcriptional regulator with oncogenic activities. Expression of CDK8, its paralog CDK19 and their binding partner Cyclin C are negative prognostic markers in breast cancer. Meta-analysis of transcriptome databases revealed an inverse correlation between CDK8 and ERalpha expression, suggesting that CDK8 could be functionally associated with ER. We have found that CDK8 inhibition by CDK8/19-selective small-molecule kinase inhibitors, by shRNA knockdown or by CRISPR/CAS9 knockout suppresses estrogen-induced transcription in ER-positive breast cancer cells; this effect was exerted downstream of ER. Estrogen addition stimulated the binding of CDK8 to the ER-responsive GREB1 gene promoter and CDK8/19 inhibition reduced estrogen-stimulated association of an elongation-competent phosphorylated form of RNA Polymerase II with GREB1. CDK8/19 inhibitors abrogated the mitogenic effect of estrogen on ER-positive cells and potentiated the growth-inhibitory effects of ER antagonist fulvestrant. Treatment of estrogen-deprived ER-positive breast cancer cells with CDK8/19 inhibitors strongly impeded the development of estrogen independence. In vivo treatment with a CDK8/19 inhibitor Senexin B suppressed tumor growth and augmented the effects of fulvestrant in ER-positive breast cancer xenografts. These results identify CDK8 as a novel downstream mediator of ER and suggest the utility of CDK8 inhibitors for ER-positive breast cancer therapy

    Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer.

    Get PDF
    Trastuzumab has been shown to improve the survival outcomes of HER2 positive breast cancer patients. However, a significant proportion of HER2-positive patients are either inherently resistant or develop resistance to trastuzumab. We assessed the effects of neratinib, an irreversible panHER inhibitor, in a panel of 36 breast cancer cell lines. We further assessed its effects with or without trastuzumab in several sensitive and resistant breast cancer cells as well as a BT474 xenograft model. We confirmed that neratinib was significantly more active in HER2-amplified than HER2 non-amplified cell lines. Neratinib decreased the activation of the 4 HER receptors and inhibited downstream pathways. However, HER3 and Akt were reactivated at 24 hours, which was prevented by the combination of trastuzumab and neratinib. Neratinib also decreased pHER2 and pHER3 in acquired trastuzumab resistant cells. Neratinib in combination with trastuzumab had a greater growth inhibitory effect than either drug alone in 4 HER2 positive cell lines. Furthermore, trastuzumab in combination with neratinib was growth inhibitory in SKBR3 and BT474 cells which had acquired resistance to trastuzumab as well as in a BT474 xenograft model. Innately trastuzumab resistant cell lines showed sensitivity to neratinib, but the combination did not enhance response compared to neratinib alone. Levels of HER2 and phospho-HER2 showed a direct correlation with sensitivity to neratinib. Our data indicate that neratinib is an effective anti-HER2 therapy and counteracted both innate and acquired trastuzumab resistance in HER2 positive breast cancer. Our results suggest that combined treatment with trastuzumab and neratinib is likely to be more effective than either treatment alone for both trastuzumab-sensitive breast cancer as well as HER2-positive tumors with acquired resistance to trastuzumab

    A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

    Get PDF
    The first simultaneous operation of the AURIGA detector and the LIGO observatory was an opportunity to explore real data, joint analysis methods between two very different types of gravitational wave detectors: resonant bars and interferometers. This paper describes a coincident gravitational wave burst search, where data from the LIGO interferometers are cross-correlated at the time of AURIGA candidate events to identify coherent transients. The analysis pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA candidate events and on the significance of the cross-correlation test in LIGO. The false alarm rate is estimated by introducing time shifts between data sets and the network detection efficiency is measured with simulated signals with power in the narrower AURIGA band. In the absence of a detection, we discuss how to set an upper limit on the rate of gravitational waves and to interpret it according to different source models. Due to the short amount of analyzed data and to the high rate of non-Gaussian transients in the detectors noise at the time, the relevance of this study is methodological: this was the first joint search for gravitational wave bursts among detectors with such different spectral sensitivity and the first opportunity for the resonant and interferometric communities to unify languages and techniques in the pursuit of their common goal.Comment: 18 pages, IOP, 12 EPS figure

    All-sky search for periodic gravitational waves in LIGO S4 data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and with the frequency's time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semi-coherent methods of transforming and summing strain power from Short Fourier Transforms (SFTs) of the calibrated data have been used. The first, known as "StackSlide", averages normalized power from each SFT. A "weighted Hough" scheme is also developed and used, and which also allows for a multi-interferometer search. The third method, known as "PowerFlux", is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitational radiation, we report upper limits; we interpret these as limits on this radiation from isolated rotating neutron stars. The best population-based upper limit with 95% confidence on the gravitational-wave strain amplitude, found for simulated sources distributed isotropically across the sky and with isotropically distributed spin-axes, is 4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C parameter defined in equation 44 which led to its overestimate by 2^(1/4). The correct values for the multi-interferometer, H1 and L1 analyses are 9.2, 9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of the upper limits presented in the paper were affecte

    All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.Comment: 6 pages, 1 figur

    Search for gravitational waves from binary inspirals in S3 and S4 LIGO data

    Get PDF
    We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0 M(sun) in the third and fourth science runs, respectively. Although the detectors could probe to distances as far as tens of Mpc, no gravitational-wave signals were identified in the 1364 hours of data we analyzed. Assuming a binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4 M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9 yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
    corecore