5 research outputs found

    Improving Membrane Filtration for Copper Speciation: Optimal Salt Pretreatments of Polyethersulfone Membranes to Prevent Analyte Retention

    No full text
    Membrane filtration has been increasingly used to separate dissolved metal ions from dispersed particles, commonly using ultrafiltration membranes, for example, polyethersulfone (PES) membranes with a molecular weight cut-off of 3 kDa. The disadvantage of this technique is an undesired retention of ions, resulting from Coulomb interactions with sulfonic acid groups of the membrane. Therefore, such a membrane acts similar to a cation exchanger column. We solved this drawback by a pretreatment of the PES membrane by other cations. Using CuSO4 as a model compound, we compared the effectiveness of five cations using their salt solutions (Ca2+, Mg2+, Fe2+, Ag+, Ba2+) as pretreatment agents and identified the most effective pretreatment component for a high recovery of copper ions. After membrane filtration without pretreatment, only 52 ± 10%, 64 ± 5%, 75 ± 8%, and 89 ± 7% of nominal Cu concentrations were obtained using initial concentrations of 0.2, 0.5, 1.0, and 4.0 mg L–1, respectively. The efficiency of the investigated cations increased in the order Fe < Ag < Mg < Ca < Ba. Furthermore, we analyzed the most efficient concentration of the pretreatment agent. The best performance was achieved using 0.1 mol L–1 CaCl2 which increased copper recovery to slightly below 100%, even at the lowest tested Cu concentration (recovery 93 ± 10% at 0.2 mg L–1). In the environmentally relevant Cu concentration range of 0.2 mg L-1, 0.1 mol L–1 BaCl2 was identified as the most efficient pretreatment (103 ± 11%)

    Potential of the Red Alga Dixoniella grisea for the Production of Additives for Lubricants

    No full text
    There is an increasing interest in algae-based raw materials for medical, cosmetic or nutraceutical applications. Additionally, the high diversity of physicochemical properties of the different algal metabolites proposes these substances from microalgae as possible additives in the chemical industry. Among the wide range of natural products from red microalgae, research has mainly focused on extracellular polymers for additive use, while this study also considers the cellular components. The aim of the present study is to analytically characterize the extra- and intracellular molecular composition from the red microalga Dixoniella grisea and to evaluate its potential for being used in the tribological industry. D. grisea samples, fractionated into extracellular polymers (EPS), cells and medium, were examined for their molecular composition. This alga produces a highly viscous polymer, mainly composed of polysaccharides and proteins, being secreted into the culture medium. The EPS and biomass significantly differed in their molecular composition, indicating that they might be used for different bio-additive products. We also show that polysaccharides and proteins were the major chemical compounds in EPS, whereas the content of lipids depended on the separation protocol and the resulting product. Still, they did not represent a major group and were thus classified as a potential valuable side-product. Lyophilized algal fractions obtained from D. grisea were found to be not toxic when EPS were not included. Upon implementation of EPS as a commercial product, further assessment on the environmental toxicity to enchytraeids and other soil organisms is required. Our results provide a possible direction for developing a process to gain an environmentally friendly bio-additive for application in the tribological industry based on a biorefinery approach
    corecore