19 research outputs found

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Drifting along in the open-ocean: The associative behaviour of oceanic triggerfish and rainbow runner with floating objects

    No full text
    Multispecies aggregations at floating objects are a common feature throughout the world's tropical and subtropical oceans. The evolutionary benefits driving this associative behaviour of pelagic fish remains unclear and information on the associative behaviour of non-tuna species remains scarce. This study investigated the associative behaviour of oceanic triggerfish (Canthidermis maculata) and rainbow runner (Elagatis bipinnulata), two major bycatch species in the tropical tuna purse seine fishery, at floating objects in the western Indian Ocean. A total of 24 rainbow runner and 46 oceanic triggerfish were tagged with acoustic transmitters at nine drifting FADs equipped with satellite linked receivers. Both species remained associated with the same floating object for extended periods; Kaplan-Meier survival estimates (considering the censored residence time due to equipment failure and fishing) suggested that mean residence time by rainbow runner and oceanic triggerfish was of 94 and 65 days, respectively. During daytime, the two species increased their home range as they typically performed short excursions (<2 h) away from the floating objects. Rainbow runner performed more excursions per unit time than oceanic triggerfish; the mean excursion index was 0.86 (±0.8 SD) for oceanic triggerfish and 1.31 (±1.1 SD) for rainbow runner. Ambient light intensity appears to be the stimulus triggering the onset and end of the associative modes. The observed prolonged residency of these two major bycatch species suggests that they are more vulnerable to the tropical tuna purse seine gear than the targeted tuna species

    Behavior of skipjack ( Katsuwonus pelamis ), yellowfin ( Thunnus albacares ), and bigeye ( T. obsesus ) tunas associated with drifting fish aggregating devices (dFADs) in the Indian Ocean, assessed through acoustic telemetry

    No full text
    We investigated the associative behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (T. obsesus) tuna within multi‐species aggregations associated with drifting fish aggregating devices (dFADs) in two different regions of the western Indian Ocean: the Mozambique Channel and the Seychelles, using acoustic telemetry. We documented the residence and absence times of tunas at two temporal scales (coarse and fine scale) and made comparisons between regions. A total of 56 tunas were tagged and released at 7 different dFADs (4 in the Mozambique Channel and 3 in the Seychelles) during four research cruises. We recorded the first observations of skipjack tuna making excursions of more than 24 hours away from dFADs before returning and confirmed findings of other studies showing that yellowfin tuna can make long excursions (4.07 days) before returning to their home dFADs. Combining both studied regions, average residence times were 7.59 days (min 0.03; max 16.49), 6.64 days (min 0.01; max 26.72), and 4.58 days (min 0.09; max 18.33) for bigeye, yellowfin, and skipjack tuna, respectively. Exponential models best fitted the residence times for all three tuna species, indicating time‐independent probabilities of departure from dFADs. For yellowfin tuna, at a coarse temporal scale, no regional differences were observed in the residence times. However, at a fine temporal scale, regional differences were apparent in both residence and absence times. This study provides new information on the associative behavior of tunas at dFADs in the Indian Ocean which is key to improving the science‐based management of dFADs

    Feeding ecology of silky sharks Carcharhinus falciformis associated with floating objects in the western Indian Ocean

    No full text
    International audienceThe silky shark Carcharhinus falciformis is commonly associated with floating objects, including fish aggregating devices (FADs), in the Indian Ocean. While the motives for this associative behaviour are unclear, it does make them vulnerable to capture in the tuna purse seine fishery that makes extensive use of FADs. Here, the diet of 323 C. falciformis, caught at FADs in the Indian Ocean, was investigated to test the hypothesis that trophic benefits explain the associative behaviour. A high proportion of stomachs with fresh contents (57%) suggested that extensive feeding activity occurred while associated with FADs. Multiple dietary indices showed that typical non-associative prey types dominated, but were supplemented with fishes typically found at FADs. While the trophic benefits of FAD association may be substantial, our results suggest that associative behaviour is not driven solely by feedin

    Context drives movement patterns in a mobile marine predator

    Get PDF
    Abstract Intra-specific variability in movement behaviour occurs in all major taxonomic groups. Despite its common occurrence and ecological consequences, individual variability is often overlooked. As a result, there is a persistent gap in knowledge about drivers of intra-specific variability in movement and its role in fulfilling life history requirements. We apply a context-focused approach to bull sharks (Carcharhinus leucas), a highly mobile marine predator, incorporating intra-specific variability to understand how variable movement patterns arise and how they might be altered under future change scenarios. Spatial analysis of sharks, acoustically tagged both at their distributional limit and the centre of distribution in southern Africa, was combined with spatial analysis of acoustically tagged teleost prey and remote-sensing of environmental variables. The objective was to test the hypothesis that varying resource availability and magnitude of seasonal environmental change in different locations interact to produce variable yet predictable movement behaviours across a species’ distribution. Sharks from both locations showed high seasonal overlap with predictable prey aggregations. Patterns were variable in the centre of distribution, where residency, small- and large-scale movements were all recorded. In contrast, all animals from the distributional limit performed ‘leap-frog migrations’, making long-distance migrations bypassing conspecifics in the centre of distribution. By combining multiple variables related to life history requirements for animals in different environments we identified combinations of key drivers that explain the occurrence of differing movement behaviours across different contexts and delineated the effects of environmental factors and prey dynamics on predator movement. Comparisons with other taxa show striking similarities in patterns of intra-specific variability across terrestrial and marine species, suggesting common drivers

    Effects of habitat modifications on the movement behavior of animals: the case study of Fish Aggregating Devices (FADs) and tropical tunas

    No full text
    Background Aggregation sites represent important sources of environmental heterogeneity and can modify the movement behavior of animals. When these sites are artificially established through anthropogenic actions, the consequent alterations to animal movements may impact their ecology with potential implications for their fitness. Floating objects represent important sources of habitat heterogeneity for tropical tunas, beneath which these species naturally aggregate in large numbers. Man-made floating objects, called Fish Aggregating Devices (FAD), are used by fishers on a massive scale to facilitate fishing operations. In addition to the direct impacts that fishing with FADs has on tuna populations, assessing the effects of increasing the numbers of FADs on the ecology of tuna is key for generating sound management and conservation measures. Methods This study investigates the effects of increasing numbers of FADs (aggregation sites) on the movements of tunas, through the comparison of electronic tagging data recorded from 146 individuals tunas (yellowfin tuna, Thunnus albacares, and skipjack tuna, Katsuwonus pelamis) tagged in three instrumented anchored FAD arrays (Mauritius, Oahu-Hawaii and Maldives), that differed according to their distances among neighboring FADs. The effect of increasing inter-FAD distances is studied considering a set of indices (residence times at FADs and absence (travel) times between two visits at FADs) and their trends. Results When inter-FAD distances decrease, tuna visit more FADs (higher connectivity between FADs), spend less time travelling between FADs and more time associated with them. The trends observed for the absence (travel) times appear to be compatible with a random-search component in the movement behaviour of tunas. Conversely, FAD residence times showed opposite trends, which could be a result of social behavior and/or prey availability. Conclusion Our results provide the first evidence of changes in tuna associative behavior for increasing FAD densities. More generally, they highlight the need for comparing animal movements in heterogeneous habitats in order to improve understanding of the impacts of anthropogenic habitat modifications on the ecology of wild animals
    corecore