84 research outputs found

    Diversity analysis of Moroccan carob ("Ceratonia siliqua" L.) accessions using phenotypic traits and RAPD markers

    Get PDF
    Diversity analysis of moroccan carob (Ceratonia siliqua L.) accessions using phenotypic traits and RAPD markers. The carob (Ceratonia siliqua L.) is a perennial leguminous (Caesalpinioideae) that grows as an evergreen shrub or tree. It¿s an important component of the Mediterranean vegetation and its adaptation in marginal soils of the Mediterranean regions is important environmentally and economically. Phenotypic and genetic diversity among 10 Ceratonia siliqua accessions coming from different areas of Morocco were studied with morphometric and RAPD approaches. The analysis of discriminative fruit characters showed highly significant differences among these accessions, the closely related ones have a similarity level less than 65%. No molecular studies have been carried out so far on Ceratonia siliqua. To provide markers useful for molecular diversity study of the carob tree, genomic DNA extraction and amplification conditions were finalized and 67 arbitrary primers were screened. 52 of them showed clearly reproducible banding patterns. The analysis of RAPD profiles revealed a high degree of genetic diversity within these carob accessions and enabled each of them to be uniquely fingerprinted. Overall, in our study we note that morphological relationship between carob accessions is deeply different to their molecular relationship. Concerning the distribution of the accessions according to their geographical origin, clustering based on RAPD data revealed a rough distribution of theses accessions. Indeed, Sidi Bou Ottman, Demnate and Essaouira accessions coming from the south of Morocco seem to be linked in the PCA plot. However, two geographically distant accessions, Aïn Sfa and Ouazzane coming from the north (about 700 Km) were clustered with Essaouira and Demanate - Sidi Bou Ottman, respectively.Analyse de la diversité des accessions du caroubier marocain (Ceratonia siliqua L.) utilisant des traits phenotypiques et des marqueurs RAPD. Le caroubier (Ceratonia siliqua L.) est une légumineuse pérenne (Caesalpinioideae), à feuillage persistant et pouvant croître entant qu¿arbrisseau ou arbre. C¿est un composant important de la végétation méditerranéenne et son adaptation aux sols marginaux des régions méditerranéennes est d¿une grande importance écologique et économique. La diversité phénotypique et génétique au sein de 10 accessions de caroubier provenant de différentes régions du Maroc a été étudiée par des approches morphométriques et moléculaires (RAPD). L¿analyse des caractères morphologiques discriminants du fruit a montré des différences hautement significatives au sein des accessions, puisque les apparentées d¿entre elles n¿ont approximativement que 65% de similarité. Jusqu¿à nos jours, aucune étude moléculaire n¿a été entreprise sur Ceratonia siliqua. Pour mettre à disposition des marqueurs utiles pour l¿étude de la diversité moléculaire du caroubier, l¿extraction de l¿ADN génomique et les conditions de l¿amplification ont été mises au point et 67 amorces arbitraires ont été criblées. 52 d¿entre elles ont montré clairement des profils de bandes reproductibles. L¿analyse des profils RAPD a révélé une diversité génétique de haut niveau entre les accessions de caroubier ce qui a permis à chacune d¿elles d¿être distinguée génétiquement de façon singulière. De manière générale, nous avons noté que la relation morphologique entre les accessions du caroubier est profondément différente de leur relation moléculaire. Concernant la distribution des accessions selon leur origine géographique, le regroupement basé sur les données de la RAPD a révélé une distribution grossière. En effet, les provenances de Sidi Bou Ottman, Demnate et Essaouira, originaires du sud de Maroc, semblent être liés par l¿analyse des composantes principales (PCA). Cependant, deux accessions géographiquement distantes, Aïn Sfa et Ouazzane, originaires du Nord (approximativement 700 Kms) ont été liées avec Essaouira et Demanate - Sidi Bou Ottman, respectivement

    Filogenetska i molekularna analiza gena hemaglutinina virusa ptičje gripe h9n2 izoliranih u jatima peradi u Maroku između 2016. i 2018. godine

    Get PDF
    Avian influenza viruses of the H9N2 subtype continue to spread in wild birds and poultry worldwide. Infection with H9N2 avian influenza virus was detected for the first time in Morocco in January 2016. In this study, a total of 105 organ and tracheal swab samples from 21 broiler farms in Morocco were collected from July 2016 to October 2018 for H9N2 screening. The suspicion of disease was based on severe respiratory signs such as sneezing, coughing, rales and gasping, while H9N2 virus infection was confirmed by real-time RT-PCR. Hemagglutinin (HA) genes of four isolates were amplified by conventional RT-PCR, sequenced, and aligned for phylogenetic analyses. Among the 21 flocks, 48% (10/21) were qRT-PCR positive for H9, with the cycle threshold values ranging from18.6 to 34.8. The maximum similarity in nucleotide and protein sequences (96-98%) was observed between the Moroccan viruses and an H9 virus isolated from broiler chickens in 2017 in Burkina Faso (A/chicken/BurkinaFaso/17RS93-19/2017) and from a layer chicken in the United Arab Emirates in 2015 (A/chicken/Dubai/D2506/2015). The HA genes revealed the close relationship between the four Moroccan viruses, with 97.9%-99.9% nucleotide identity. Phylogenetic analysis showed that the Moroccan viruses belonged to the G1 lineage, and likely originated from the Middle East, as previously reported in 2016.Virusi ptičje gripe H9N2 nastavljaju se širiti u peradi i divljih ptica širom svijeta. Infekcija niskopatogenim virusom influence H9N2 prvi je put otkrivena u Maroku u siječnju 2016. godine. U ovom je istraživanju za probir na H9N2 prikupljeno ukupno 105 organa i obrisaka iz dušnika s 21 farme brojlera od srpnja 2016. do listopada 2018. iz različitih regija Maroka. Sumnja na bolest temeljila se na teškim respiracijskim znakovima kao što su kihanje, kašljanje, hropanje i hripanje, a infekcija virusom H9N2 potvrđena je PCR-om obrnute transkripcije u stvarnom vremenu. Sekvencije gena za hemaglutinin (HA) od četiri izolata amplificirane su pomoću RT-PCR qRT-PCR poravnane za filogenetsku i analizu sličnosti aminokiselina. Od 21 uzorka jata 48 % (10/21) bilo je pozitivno na H9 s pragom broja ciklusa u rasponu od 18,6 do 34,8. Maksimalna sličnost u nukleotidnim i proteinskim sekvencijama (96 -98 %) uočena je između marokanskih virusa i virusa H9 izoliranih iz brojlerskih pilića u 2017. u Burkini Faso (A/piletina/BurkinaFaso/17RS93-19) i od kokošjeg pileta u Ujedinjenim Arapskim Emiratima u 2015. (A/piletina/ Dubai/D2506/2015). HA geni otkrili su blisku vezu između četiriju virusa, s 97,9 % -99,9 % nukleotidnog identiteta. Filogenetska analiza pokazala je da marokanski virusi pripadaju lozi G1 i vjerojatno potječu s Bliskog istoka, kao što je objavljeno 2016. godine

    Electrolyte ions and glutathione enzymes as stress markers in Argania spinosa subjected to drought stress and recovery

    Get PDF
    Understanding the mechanisms underlying Argania spinosa responses to drought stress is essential for its regeneration and domestication. Toward that end, an integrative study of tolerance responses to drought stress in four A. spinosa ecotypes (2 contrasting coastal ecotypes (Adm and Rab) and 2 contrasting inland ecotypes (Alz and Lks)) have been conducted. Responses to soil drying and re -watering were measured at physiological and biochemical levels. Soil drying resulted in significant increase in leaf concentrations of potassium (K+), calcium (Ca2+) and magnesium (Mg2+) with differential responses between ecotypes. The glutathione-related enzymes: glutathione peroxidase (GP), glutathione reductase (GR) and glutathione S-transferase (GST) showed a significant increase in their enzymatic activity in A. spinosa plants subjected to drought stress. Additionally, a significant increase in thiol protein content in the four ecotypes was recorded, during drought stress. These antioxidant traits responded differently depending on ecotype. However, rapid and significant changes in the studied physiological and biochemical traits were observed during recovery from drought, only after four days. According to the traits having the most discriminating power, the both inland ecotypes, especially Lks ecotype, seem to be potential candidates for regeneration of argan forest and their domestication in arid and semi-arid environments.Key words: Argania spinosa, drought stress, glutathione enzymes, thiol compounds, recovery

    Genomic regions of durum wheat involved in water productivity

    Get PDF
    Durum wheat is a staple food of the Mediterranean Basin, mostly cultivated under rainfed conditions. As such, the crop is often exposed to moisture stress. Therefore, the identification of genetic factors controlling the capacity of genotypes to convert moisture into grain yield (i.e., water productivity) is quintessential to stabilize production despite climatic variations. A global panel of 384 accessions was tested across eighteen Mediterranean environments (Morocco, Lebanon, and Jordan) representing a vast range of moisture levels. The accessions were assigned to water responsiveness classes, with genotypes ‘Responsive to Low Moisture’ reaching an average + 1.5 kg ha -1 mm -1 yield advantage. Genome wide association studies (GWAS) revealed that six loci explained most of this variation. A second validation panel tested under moisture stress confirmed that carrying the positive allele at three loci on chromosomes 1B, 2A, and 7B generated an average water productivity gain of + 2.2 kg ha -1 mm -1. These three loci were tagged by Kompetitive Allele Specific PCR (KASP) markers, and these were used to screen a third independent validation panel composed of elites tested across moisture-stressed sites. The three KASP combined predicted up to 10% of the variation for grain yield at 60% accuracy. These loci are now ready for molecular pyramiding and transfer across cultivars to improve the moisture conversion of durum wheat

    Patterns of Genetic Diversity and Structure at Fine Scale of an Endangered Moroccan Endemic Tree (Argania spinosa L. Skeels) Based on ISSR Polymorphism

    Get PDF
    The preservation of the diversity of endangered populations of argan trees, in their natural habitat, is a crucial step toward their conservation. The aim of the present study was to evaluate the genetic diversity of the argan trees in the wild, and to establish a phylogenetic map using DNA fingerprints. The ultimate goal was to develop a core set that would represent the existing diversity in the whole germplasm. In regard to this, 200 samples of Argania spinosa individual trees were collected from 10 different provenances in the region of Essaouira (Morocco). The genetic variation between and within these argan trees was investigated using previously described Inter-Simple Sequence Repeat markers. These markers generated a total of 149 fragments, in which 148 (99.33%) were polymorphic. The samples collected in the 'Ouled Lhaj' provenance showed the lowest diversity (% of polymorphic locus P=48.32%; genetic diversity Nei h=0.153; allelic richness A=1.483), compared to those collected in the 'Mramer' provenance (%P=68.46%; h=0.233; A=1.685). Also, the results showed a high level of genetic differentiation among provenances (AMOVA=44%, Gst=0.40), and a limited gene flow (Nm=0.73) between the provenances. In addition, these data suggested a low correlation between the genetic diversity of the tree and their respective geographical location in relation to the proximity to the littoral. Finally, a core collection of 13 genotypes that represent the essential of the detected diversity was established. The distribution pattern of this genetic diversity provides an important baseline data for the conservation strategies of argan tree species in the wild

    Durum Wheat Breeding: In the Heat of the Senegal River

    Get PDF
    Global warming may cause +4 degrees C temperature increases before the end of this century. Heat tolerant bred-germplasm remains the most promising method to ensure farm productivity under this scenario. A global set of 384 durum wheat accessions were exposed to very high temperatures occurring along the Senegal River at two sites for two years. The goal was to identify germplasm with enhanced tolerance to heat. There was significant variation for all traits. The genetic (G) effect accounted for >15% of the total variation, while the genotype by environment interaction (G x E) reached 25%. A selection index that combines G and a G x E wide adaptation index was used to identify stable high yielding germplasm. Forty-eight accessions had a stable grain yield above the average (2.7 t ha(-1)), with the three top lines above 3.5 t ha(-1). Flowering time, spike fertility and harvest index were the most critical traits for heat tolerance, while 1000-kernel weight and spike density only had environment-specific effects. Testing of six subpopulations for grain yield across heat-prone sites revealed an even distribution among clusters, thus showing the potential of this panel for dissecting heat tolerance via association genetics

    Effect of phospho-compost and phosphate laundered sludge combined or not with endomycorrhizal inoculum on the growth and yield of tomato plants under greenhouse conditions

    Get PDF
    The study aims to evaluate the eff ect of endomycorrhizal inoculum (arbuscular mycorrhizal fungi), phospho-compost and phosphate sludge in single (M, PC, PS) or dual combinations (PC+M, PS+M, PS+PC) compared to agricultural and Mamora soils (A and S) on the growth, fl owering, and yield of tomato plants. Among the studied treatments, the substrates containing 5% of phospho-compost combined with endomycorrhizal inoculum (PC+M) gave the most positive eff ect followed by phospho-compost (PC) and endomycorrhizal inoculum (M). In response to PC+M substrate, tomato plant height, the number of leaves and fl owers attained 90 cm, 30, and 25, respectively. In substrates PC and M, tomato plants showed a height of 85 and 75 cm, leaves number of 30 and 19 leave/plant and number of fl owers of 21, and 19 fl ower/plant. An optimal yield with (12 fruits/plant) was recorded in tomato plants grown on the substrate amended with bio-inoculant (AMF) and phospho-compost at a rate of 5%. In terms of qualitative parameters, the highest fresh and dry weight of aerial plant parts and root system were recorded in tomato plants grown in culture substrate incorporating 10 g of endomycorrhizal inoculum and 5% of phospho-compost reaching respectively103.4 g, 34 g 90.1 g, 28.9 g as compared to 87, 51, 23 and 24.1 g noted by tomato plants on the substrate with phospho-compost (5%) (PC). The highest mycorrhization parameters (frequency (F), intensity of mycorrhization (M), average arbuscular content (A), average vesicular content (V), average intraradicular spore content (S)) were found in the roots of tomato plants growing on substrates amended with 5% phospho-compost plus 10 g of endomycorrhizal inoculum, with percentages of 100% F, 61% M, 40.67% A, 18.36% V, and 56.9% S
    corecore