1,944 research outputs found

    Probing the effect of gravitational microlensing on the measurements of the Rossiter-McLaughlin effect

    Full text link
    In general, in the studies of transit light-curves and the Rossiter-McLaughlin (RM), the contribution of the planet's gravitational microlensing is neglected. Theoretical studies, have, however shown that the planet's microlensing can affect the transit light-curve and in some extreme cases cause the transit depth to vanish. In this letter, we present the results of our quantitative analysis of microlening on the RM effect. Results indicate that for massive planets in on long period orbits, the planet's microlensing will have considerable contribution to the star's RV measurements. We present the details of our study, and discuss our analysis and results.Comment: 6 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    Resynchronizing classes of word relations

    Get PDF
    A natural approach to defining binary word relations over a finite alphabet A is through two-tape finite state automata, which can be seen as regular language L over {1,2} x A, where (i,a) is interpreted as reading letter a from tape i. Thus, a word w of the language L denotes the pair (u_1,u_2) in A* x A* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, that we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C contained in {1,2}*, one obtains a class Rel(C) of relations, such as the classes of Regular, Recognizable, or length-preserving relations, as well as (infinitely) many other classes. We study the problem of containment for synchronized classes of relations: given C,D subsets of {1,2}*, is Rel(C) contained in Rel(D)? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1,2} x A preserving the denoted relation whenever the inclusion holds

    The quantum brachistochrone problem for non-Hermitian Hamiltonians

    Get PDF
    Recently Bender, Brody, Jones and Meister found that in the quantum brachistochrone problem the passage time needed for the evolution of certain initial states into specified final states can be made arbitrarily small, when the time-evolution operator is taken to be non-Hermitian but PT-symmetric. Here we demonstrate that such phenomena can also be obtained for non-Hermitian Hamiltonians for which PT-symmetry is completely broken, i.e. dissipative systems. We observe that the effect of a tunable passage time can be achieved by projecting between orthogonal eigenstates by means of a time-evolution operator associated with a non-Hermitian Hamiltonian. It is not essential that this Hamiltonian is PT-symmetric

    A new analysis of the WASP-3 system: no evidence for an additional companion

    Full text link
    In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so far. We did not observe significant periodicities in the Fourier spectrum of the observed minus calculated (O-C) transit timing and radial velocity diagrams (the highest peak having false-alarm probabilities of 56 per cent and 31 per cent, respectively) or long-term trends. Combining all the available information, we conclude that the radial velocity and transit timing techniques exclude, at 99 per cent confidence limit, any perturber more massive than M \gtrsim 100 M_Earth with periods up to 10 times the period of the inner planet. We also investigate the possible presence of an exomoon on this system and determined that considering the scatter of the O-C transit timing residuals a coplanar exomoon would likely produce detectable transits. This hypothesis is however apparently ruled out by observations conducted by other researchers. In case the orbit of the moon is not coplanar the accuracy of our transit timing and transit duration measurements prevents any significant statement. Interestingly, on the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active (log R'_hk=-4.95) to a more active (log R'_hk=-4.8) state during the 3 yr monitoring period spanned by the observations. Despite no clear spot crossing has been reported for this system, this analysis claims for a more intensive monitoring of the activity level of this star in order to understand its impact on photometric and radial velocity measurements.Comment: MNRAS accepted (14/08/2012

    Existence criteria for stabilization from the scaling behaviour of ionization probabilities

    Get PDF
    We provide a systematic derivation of the scaling behaviour of various quantities and establish in particular the scale invariance of the ionization probability. We discuss the gauge invariance of the scaling properties and the manner in which they can be exploited as consistency check in explicit analytical expressions, in perturbation theory, in the Kramers-Henneberger and Floquet approximation, in upper and lower bound estimates and fully numerical solutions of the time dependent Schroedinger equation. The scaling invariance leads to a differential equation which has to be satisfied by the ionization probability and which yields an alternative criterium for the existence of atomic bound state stabilization.Comment: 12 pages of Latex, one figur

    Resonant enhancements of high-order harmonic generation

    Get PDF
    Solving the one-dimensional time-dependent Schr\"odinger equation for simple model potentials, we investigate resonance-enhanced high-order harmonic generation, with emphasis on the physical mechanism of the enhancement. By truncating a long-range potential, we investigate the significance of the long-range tail, the Rydberg series, and the existence of highly excited states for the enhancements in question. We conclude that the channel closings typical of a short-range or zero-range potential are capable of generating essentially the same effects.Comment: 7 pages revtex, 4 figures (ps files

    Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution

    Full text link
    We explore the relations between physical and orbital properties of planets and properties of their host stars to identify the main observable signatures of the formation and evolution processes of planetary systems. We use a large sample of FGK dwarf planet hosts with stellar parameters derived in a homogeneous way from the SWEET-Cat database to study the relation between stellar metallicity and position of planets in the period-mass diagram. In the second part we use all the RV-detected planets orbiting FGK stars to explore the role of planet-disk and planet-planet interaction on the evolution of orbital properties of planets with masses above 1MJup. We show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from 10MEarth to 4MJup. Earth-like planets orbiting metal-rich stars always show shorter periods (fewer than 20 days) than those orbiting metal-poor stars. We also found statistically significant evidence that very high mass giants have on average more eccentric orbits than giant planets with lower mass.Finally, we show that the eccentricity of planets with masses higher than 4MJup tends to be lower for planets with shorter periods. Our results suggest that the planets in the P-MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker depending on the metallicity of the respective system. One possibility is that planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems. The trends and dependencies obtained for very high mass planetary systems suggest that planet-disk interaction is a very important and orbit-shaping mechanism for planets in the high-mass domain. Shortened.Comment: 8 pages, 4 figures and 1 table. Accepted for publication in A&

    PASTIS: Bayesian extrasolar planet validation II. Constraining exoplanet blend scenarios using spectroscopic diagnoses

    Full text link
    The statistical validation of transiting exoplanets proved to be an efficient technique to secure the nature of small exoplanet signals which cannot be established by purely spectroscopic means. However, the spectroscopic diagnoses are providing us with useful constraints on the presence of blended stellar contaminants. In this paper, we present how a contaminating star affects the measurements of the various spectroscopic diagnoses as function of the parameters of the target and contaminating stars using the model implemented into the PASTIS planet-validation software. We find particular cases for which a blend might produce a large radial velocity signal but no bisector variation. It might also produce a bisector variation anti-correlated with the radial velocity one, as in the case of stellar spots. In those cases, the full width half maximum variation provides complementary constraints. These results can be used to constrain blend scenarios for transiting planet candidates or radial velocity planets. We review all the spectroscopic diagnoses reported in the literature so far, especially the ones to monitor the line asymmetry. We estimate their uncertainty and compare their sensitivity to blends. Based on that, we recommend the use of BiGauss which is the most sensitive diagnosis to monitor line-profile asymmetry. In this paper, we also investigate the sensitivity of the radial velocities to constrain blend scenarios and develop a formalism to estimate the level of dilution of a blended signal. Finally, we apply our blend model to re-analyse the spectroscopic diagnoses of HD16702, an unresolved face-on binary which exhibits bisector variations.Comment: Accepted for publication in MNRA

    The periodic Anderson model from the atomic limit and FeSi

    Get PDF
    The exact Green's functions of the periodic Anderson model for UU\to \infty are formally expressed within the cumulant expansion in terms of an effective cumulant. Here we resort to a calculation in which this quantity is approximated by the value it takes for the exactly soluble atomic limit of the same model. In the Kondo region a spectral density is obtained that shows near the Fermi surface a structure with the properties of the Kondo peak. Approximate expressions are obtained for the static conductivity % \sigma (T) and magnetic susceptibility χ(T)\chi (T) of the PAM, and they are employed to fit the experimental values of FeSi, a compound that behaves like a Kondo insulator with both quantities vanishing rapidly for T0T\to 0. Assuming that the system is in the intermediate valence region, it was possible to find good agreement between theory and experiment for these two properties by employing the same set of parameters. It is shown that in the present model the hybridization is responsible for the relaxation mechanism of the conduction electrons.Comment: 26 pages and 8 figure
    corecore