122 research outputs found

    Seropositivity for Coxiella burnetii in Wild Boar (Sus scrofa) and Red Deer (Cervus elaphus) in Portugal

    Get PDF
    Q fever is caused by the pathogen Coxiella burnetii and is a zoonosis that naturally infects goats, sheep, and cats, but can also infect humans, birds, reptiles, or arthropods. A survey was conducted for the detection of antibodies against C. burnetii in a sample of 617 free-ranging wild ruminants, 358 wild boar (Sus scrofa) and 259 red deer (Cervus elaphus), in east-central Portugal during the 2016-2022 hunting seasons. Only adult animals were sampled in this study. Antibodies specific to C. burnetii were detected using a commercial enzyme-linked immunosorbent assay (ELISA; IDVet(R), Montpellier, France) according to the manufacturer's instructions. The seroprevalence of C. burnetii infection was 1.5% (n = 9; 95% confidence interval [CI]: 0.7-2.8%). Antibodies against C. burnetii were detected in 4/358 wild boar (1.1%; 95% CI: CI: 0.3-2.8%) and 5/259 red deer (1.9%; 0.6-4.5%). Results of the present study indicate that antibodies against C. burnetii were present in wild boar and red deer in Portugal. These findings can help local health authorities to focus on the problem of C. burnetii in wildlife and facilitate the application of a One Health approach to its prevention and control

    Prevalence and Risk Factors for Hepatitis E Virus in Wild Boar and Red Deer in Portugal

    Get PDF
    Hepatitis E virus (HEV) is a zoonotic foodborne virus with an annual infection prevalence of 20 million human cases, which seriously affects public health and economic development in both developed and developing countries. To better understand the epidemiology of HEV in Central Portugal, a cross-sectional study was conducted from 2016 to 2023 with sera samples from wild ungulates. The seroprevalence and risk factors for HEV seropositivity were evaluated in the present study. Specifically, antibodies against HEV were determined by a commercial enzyme-linked immune-sorbent assay (ELISA). Our results show that in the 650 sera samples collected from 298 wild red deer and 352 wild boars in Portugal, 9.1% red deer and 1.7% wild boar were positive for antibodies to HEV. Regarding age, the seropositivity in juvenile wild ungulates was 1.3%, whereas it was 7.2% in adults. Logistic regression models investigated risk factors for seropositivity. The odds of being seropositive was 3.6 times higher in adults than in juveniles, and the risk was 4.2 times higher in red deer than in wild boar. Both wild ungulate species were exposed to HEV. The higher seroprevalence in red deer suggests that this species may make a major contribution to the ecology of HEV in Central Portugal. Further research is needed to understand how wildlife affects the epidemiology of HEV infections in Portugal.This research was funded by projects UIDP/00772/2020 and LA/P/0059/2020, funded by the Portuguese Foundation for Science and Technology (FCT). Sérgio Santos-Silva would like to thank Fundação para a Ciência e a Tecnologia (FCT) for the financial support of his Ph.D. work under the scholarship 2021.09461.BD contract through the Maria de Sousa-2021 program

    MORE CARE Overview

    Get PDF
    International audienceThis paper provides an overview of MORE CARE, a European R&D project financed within the 5th Framework Energy Programme. This project has as main objective the development of an advanced control software system, aiming to optimize the overall performance of isolated and weakly interconnected systems in liberalized market environments by increasing the share of wind energy and other renewable forms, including advanced on-line security functions. The main features of the control system comprise advanced software modules for load and wind power forecasting, unit commitment and economic dispatch of the conventional and renewable units and on-line security assessment capabilities integrated in a friendly Man-Machine environment. Pilot installations of advanced control functions are foreseen on the islands of Crete, Ireland and Madeira

    Fetal lung underdevelopment is rescued by administration of amniotic fluid stem cell extracellular vesicles in rodents

    Get PDF
    Fetal lung underdevelopment, also known as pulmonary hypoplasia, is characterized by decreased lung growth and maturation. The most common birth defect found in babies with pulmonary hypoplasia is congenital diaphragmatic hernia (CDH). Despite research and clinical advances, babies with CDH still have high morbidity and mortality rates, which are directly related to the severity of lung underdevelopment. To date, there is no effective treatment that promotes fetal lung growth and maturation. Here, we describe a stem cell–based approach in rodents that enhances fetal lung development via the administration of extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs). Using fetal rodent models of pulmonary hypoplasia (primary epithelial cells, organoids, explants, and in vivo), we demonstrated that AFSC-EV administration promoted branching morphogenesis and alveolarization, rescued tissue homeostasis, and stimulated epithelial cell and fibroblast differentiation. We confirmed this regenerative ability in in vitro models of lung injury using human material, where human AFSC-EVs obtained following good manufacturing practices restored pulmonary epithelial homeostasis. Investigating EV mechanism of action, we found that AFSC-EV beneficial effects were exerted via the release of RNA cargo. MicroRNAs regulating the expression of genes involved in lung development, such as the miR17–92 cluster and its paralogs, were highly enriched in AFSC-EVs and were increased in AFSC-EV–treated primary lung epithelial cells compared to untreated cells. Our findings suggest that AFSC-EVs hold regenerative ability for underdeveloped fetal lungs, demonstrating potential for therapeutic application in patients with pulmonary hypoplasia

    Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    Get PDF
    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient

    Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    Get PDF
    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient

    The Salmonella effector SseJ disrupts microtubule dynamics when ectopically expressed in Normal Rat Kidney cells

    Get PDF
    Salmonella effector protein SseJ is secreted by Salmonella into the host cell cytoplasm where it can then modify host cell processes. Whilst host cell small GTPase RhoA has previously been shown to activate the acyl-transferase activity of SseJ we show here an un-described effect of SseJ protein production upon microtubule dynamism. SseJ prevents microtubule collapse and this is independent of SseJ's acyl-transferase activity. We speculate that the effects of SseJ on microtubules would be mediated via its known interactions with the small GTPases of the Rho family
    • …
    corecore