2,391 research outputs found

    Spin-torque switching: Fokker-Planck rate calculation

    Full text link
    We describe a new approach to understanding and calculating magnetization switching rates and noise in the recently observed phenomenon of "spin-torque switching". In this phenomenon, which has possible applications to information storage, a large current passing from a pinned ferromagnetic (FM) layer to a free FM layer switches the free layer. Our main result is that the spin-torque effect increases the Arrhenius factor exp(E/kT)\exp(-E/kT) in the switching rate, not by lowering the barrier EE, but by raising the effective spin temperature TT. To calculate this effect quantitatively, we extend Kramers' 1940 treatment of reaction rates, deriving and solving a Fokker-Planck equation for the energy distribution including a current-induced spin torque of the Slonczewski type. This method can be used to calculate slow switching rates without long-time simulations; in this Letter we calculate rates for telegraph noise that are in good qualitative agreement with recent experiments. The method also allows the calculation of current-induced magnetic noise in CPP (current perpendicular to plane) spin valve read heads.Comment: 11 pages, 8 figures, 1 appendix Original version in Nature format, replaced by Phys. Rev. Letters format. No substantive change

    Virus Sharing, Genetic Sequencing, and Global Health Security

    Get PDF
    The WHO’s Pandemic Influenza Preparedness (PIP) Framework was a milestone global agreement designed to promote the international sharing of biological samples to develop vaccines, while that ensuring poorer countries would have access to those vaccines. Since the PIP Framework was negotiated, scientists have developed the capacity to use genetic sequencing data (GSD) to develop synthetic viruses rapidly for product development of life-saving technologies in a time-sensitive global emergency—threatening to unravel the Framework. Access to GSD may also have major implications for biosecurity, biosafety, and intellectual property (IP). By rendering the physical transfer of viruses antiquated, GSD may also undermine the effectiveness of the PIP Framework itself, with disproportionate impacts on poorer countries. We examine the changes that need to be made to the PIP Framework to address the growing likelihood that GSD might be shared instead of physical virus samples. We also propose that the international community harness this opportunity to expand the scope of the PIP Framework beyond only influenza viruses with pandemic potential. In light of non-influenza pandemic threats such as the Middle East Respiratory Syndrome (MERS) and Ebola, we call for an international agreement on the sharing of the benefits of research – such as vaccines and treatments – for other infectious diseases to ensure not only a more secure and healthy world, but also a more just world, for humanity

    Magnetic properties of (Fe1x_{1-x}Cox_x)2_2B alloys and the effect of doping by 5dd elements

    Full text link
    We have explored, computationally and experimentally, the magnetic properties of \fecob{} alloys. Calculations provide a good agreement with experiment in terms of the saturation magnetization and the magnetocrystalline anisotropy energy with some difficulty in describing Co2_2B, for which it is found that both full potential effects and electron correlations treated within dynamical mean field theory are of importance for a correct description. The material exhibits a uniaxial magnetic anisotropy for a range of cobalt concentrations between x=0.1x=0.1 and x=0.5x=0.5. A simple model for the temperature dependence of magnetic anisotropy suggests that the complicated non-monotonous temperature behaviour is mainly due to variations in the band structure as the exchange splitting is reduced by temperature. Using density functional theory based calculations we have explored the effect of substitutional doping the transition metal sublattice by the whole range of 5dd transition metals and found that doping by Re or W elements should significantly enhance the magnetocrystalline anisotropy energy. Experimentally, W doping did not succeed in enhancing the magnetic anisotropy due to formation of other phases. On the other hand, doping by Ir and Re was successful and resulted in magnetic anisotropies that are in agreement with theoretical predictions. In particular, doping by 2.5~at.\% of Re on the Fe/Co site shows a magnetocrystalline anisotropy energy which is increased by 50\% compared to its parent (Fe0.7_{0.7}Co0.3_{0.3})2_2B compound, making this system interesting, for example, in the context of permanent magnet replacement materials or in other areas where a large magnetic anisotropy is of importance.Comment: 15 pages 17 figure

    The Global Health System: Strengthening National Health Systems as the Next Step for Global Progress

    Get PDF
    In the second in a series of articles on the changing nature of global health institutions, Julio Frenk offers a framework to better understand national health systems and their role in global health

    Multiscale nature of hysteretic phenomena: Application to CoPt-type magnets

    Get PDF
    We suggest a workable approach for the description of multiscale magnetization reversal phenomena in nanoscale magnets and apply it to CoPt-type alloys. We show that their hysteretic properties are governed by two effects originating at different length scales: a peculiar splitting of domain walls and their strong pinning at antiphase boundaries. We emphasize that such multiscale nature of hysteretic phenomena is a generic feature of nanoscale magnetic materials.Comment: 4 pages (revtex 4), 2 color EPS figure

    Calculation of coercivity of magnetic nanostructures at finite temperatures

    Full text link
    We report a finite temperature micromagnetic method (FTM) that allows for the calculation of the coercive field of arbitrary shaped magnetic nanostructures at time scales of nanoseconds to years. Instead of directly solving the Landau-Lifshitz-Gilbert equation, the coercive field is obtained without any free parameter by solving a non linear equation, which arises from the transition state theory. The method is applicable to magnetic structures where coercivity is determined by one thermally activated reversal or nucleation process. The method shows excellent agreement with experimentally obtained coercive fields of magnetic nanostructures and provides a deeper understanding of the mechanism of coercivity.Comment: submitted to Phys. Rev.

    Exchange coupled perpendicular media

    Full text link
    The potential of exchange spring bilayers and graded media is reviewed. An analytical model for the optimization of graded media gives an optimal value of the magnetic polarization of Js = 0.8 T. The optimum design allows for thermally stable grains with grain diameters in the order of 3.3 nm, which supports ultra high density up to 5 to 10 Tbit per inch2. The switching field distribution is significantly reduced in bilayer media and graded media compared to single phase media. For the graded media the switching field distribution is reduced by about a factor of two. For bilayer media the minimum switching field distribution is obtained for soft layer anisotropies about one fifth of the hard layer anisotropy. The influence of precessional switching on the reversal time and the reversal field is investigated in detail for magnetic bilayers. Exchange spring bilayers can be reversed with field pulses of 20 ps.Comment: submitted to JMMM, 'Current Perspectives; Perpendicular recording
    corecore