We have explored, computationally and experimentally, the magnetic properties
of \fecob{} alloys. Calculations provide a good agreement with experiment in
terms of the saturation magnetization and the magnetocrystalline anisotropy
energy with some difficulty in describing Co2B, for which it is found that
both full potential effects and electron correlations treated within dynamical
mean field theory are of importance for a correct description. The material
exhibits a uniaxial magnetic anisotropy for a range of cobalt concentrations
between x=0.1 and x=0.5. A simple model for the temperature dependence of
magnetic anisotropy suggests that the complicated non-monotonous temperature
behaviour is mainly due to variations in the band structure as the exchange
splitting is reduced by temperature. Using density functional theory based
calculations we have explored the effect of substitutional doping the
transition metal sublattice by the whole range of 5d transition metals and
found that doping by Re or W elements should significantly enhance the
magnetocrystalline anisotropy energy. Experimentally, W doping did not succeed
in enhancing the magnetic anisotropy due to formation of other phases. On the
other hand, doping by Ir and Re was successful and resulted in magnetic
anisotropies that are in agreement with theoretical predictions. In particular,
doping by 2.5~at.\% of Re on the Fe/Co site shows a magnetocrystalline
anisotropy energy which is increased by 50\% compared to its parent
(Fe0.7Co0.3)2B compound, making this system interesting, for
example, in the context of permanent magnet replacement materials or in other
areas where a large magnetic anisotropy is of importance.Comment: 15 pages 17 figure