26 research outputs found

    Convergent evolution of pregnancy-specific glycoproteins in human and horse

    Get PDF
    Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs. Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet–fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal–fetal interactions

    Men’s preferences for women’s breast size and shape in four cultures

    Get PDF
    The morphology of human female breasts typical for their permanent fat deposits appears to be unique among primates. It has been previously suggested that female breast morphology arose as a result of sexual selection. This is supported by evidence showing that women with larger breasts tend to have higher estrogen levels; breast size may therefore serve as an indicator of potential fertility. However, breasts become less firm with age and parity, and breast shape could thus also serve as a marker of residual fertility. Therefore, cross-culturally, males are hypothesized to prefer breast morphology that indicates both high potential and residual fertility. To test this, we performed a survey on men´s preferences for breast morphology in four different cultures (Brazil, Cameroon, the Czech Republic, Namibia). As stimuli, we used two sets of images varying in breast size (marker of potential fertility) and level of breast firmness (marker of residual fertility). Individual preferences for breast size were variable, but the majority of raters preferred medium sized, followed by large sized breasts. In contrast, we found systematic directional preferences for firm breasts across all four samples. This pattern supports the idea that breast morphology may serve as a residual fertility indicator, but offers more limited support for the potential fertility indicator hypothesis. Future studies should focus on a potential interaction between the two parameters, breast size and firmness, which, taken together, may help to explain the relatively large variation in women's breast sizes

    Non-financial reporting of chemical companies in the Czech Republic

    No full text
    This paper focuses on the issue of non-financial corporate reporting by the Czech chemical companies. Based on the content analysis of the websites and disclosures, it analyses, compares and evaluates the level of web communication of the economic, environmental and social issues of corporate social responsibility of these companies. At first, it presents results of the research comparing the extent of non-financial web communication of selected Czech chemical companies with the Czech leaders in the Czech TOP 100 rankings. These results are then complemented by results of the quantitative research on environmental instruments used by all Czech chemical production companies, that use websites for communication of their activities. The number of companies in the Czech Republic processing non-financial reports is significantly lower than abroad, but it is still growing. Large enterprises pay more attention to non-financial reporting. Rather than including this information in a disclosure, a business website is used as a tool for this communication. The paper brings sectoral perspective into non-financial reporting literature, as attention is paid to the chemical production sector and also complements the knowledge of communication of companies that do not belong to the group of 100 most important companies within the country

    Influence of delayed graft function and acute rejection on outcomes after kidney transplantation from donors after cardiac death

    No full text
    Background Delayed graft function (DGF) and acute rejection (AR) exert an adverse impact on graft outcomes after kidney transplantation using organs from donation after brain-stem death (DBD) donors. Here, we examine the impact of DGF and AR on graft survival in kidney transplants using organs from donation after cardiac death (DCD) donors. Methods We conducted a single-center retrospective study of DCD and DBD donor kidney transplants. We compared 1- and 4-year graft and patient survival rates, as well as death-censored graft survival (DCGS) rates, between the two groups using univariate analysis, and the impact of DGF and AR on graft function was compared using multivariate analysis. Results Eighty DCD and 206 DBD donor transplants were analyzed. Median follow-up was 4.5 years. The incidence of DGF was higher among DCD recipients (73% vs. 27%, P<0.001), and AR was higher among DBD recipients (23% vs. 9%, P<0.001). One-year and 4-year graft survival rates were similar (DCD 94% and 79% vs. DBD 90% and 82%). Among recipients with DGF, the 4-year DCGS rate was better for DCD recipients compared with DBD recipients (100% vs. 92%, P=0.04). Neither DGF nor AR affected the 1-year graft survival rate in DCD recipients, whereas in DBD recipients, the 1-year graft survival rate was worse in the presence of DGF (88% vs. 96%, P=0.04) and the 4-year DCGS rate was worse in the presence of AR (88% vs. 96%, P=0.04). Conclusion Despite the high incidence of DGF, medium-term outcomes of DCD kidney transplants are comparable to those from DBD transplants. Short-term graft survival from DCD transplants is not adversely influenced by DGF and AR, unlike in DBD transplants

    Impact of Endoluminal Radiofrequency Ablation on Immunity in Pancreatic Cancer and Cholangiocarcinoma

    No full text
    Radiofrequency ablation (RFA) is a mini-invasive loco-regional ablation technique that is increasingly being used as a palliative treatment for pancreatic cancer and cholangiocarcinoma. Ablation-triggered immune system stimulation has been proposed as a mechanism behind the systemic effects of RFA. The aim of our study was to investigate the immune response to endoluminal biliary RFA. Peripheral blood samples were collected from patients with pancreatic cancer and cholangiocarcinoma randomised to receive endoluminal biliary radiofrequency ablation + stent (19 patients) or stent only (21 patients). We observed an early increase in IL-6 levels and a delayed increase in CXCL1, CXCL5, and CXCL11 levels as well as an increase in CD8+ and NK cells. However, these changes were not specific to RFA treatment. Explicitly in response to RFA, we observed a delayed increase in serum CXCL1 levels and an early decrease in the number of anti-inflammatory CD206+ blood monocytes. Our study provides the first evidence of endoluminal biliary RFA-based regulation of the systemic immune response in patients with pancreatic cancer and cholangiocarcinoma. These changes were characterised by a general inflammatory response. RFA-specific activation of the adaptive immune system was not confirmed

    Di-4-ANEPPS modulates electrical activity and progress of myocardial ischemia in rabbit isolated heart

    Get PDF
    Aims: Although voltage-sensitive dye di-4-ANEPPS is a common tool for mapping cardiac electrical activity, reported effects on electrophysiological parameters are rather. The main goals of the study were to reveal effects of the dye on rabbit isolated heart and to verify, whether rabbit isolated heart stained with di-4-ANEPPS is a suitable tool for myocardial ischemia investigation. Methods and Results: Study involved experiments on stained (n = 9) and non-stained (n = 11) Langendorff perfused rabbit isolated hearts. Electrophysiological effects of the dye were evaluated by analysis of various electrogram (EG) parameters using common paired and unpaired statistical tests. It was shown that staining the hearts with di-4-ANEPPS leads to only short-term sporadic prolongation of impulse conduction through atria and AV node. On the other hand, significant irreversible slowing of heart rate and ventricular conduction were found in stained hearts as compared to controls. In patch clamp experiments, significant inhibition of sodium current density was observed in differentiated NG108-15 cells stained by the dye. Although no significant differences in mean number of VPBs were found between the stained and the non-stained hearts in ischemia as well as in reperfusion, all abovementioned results indicate increased arrhythmogenicity. In isolated hearts during ischemia, prominent ischemic patterns appeared in the stained hearts with 3-4 min delay as compared to the non-stained ones. Moreover, the ischemic changes did not achieve the same magnitude as in controls even after 10 minutes of ischemia. It resulted in poor performance of ischemia detection by proposed EG parameters, as was quantified by receiver operating characteristics analysis. Conclusions: Our results demonstrate significant direct irreversible effect of di-4-ANEPPS on spontaneous heart rate and ventricular impulse conduction in rabbit isolated heart model. Particularly, this should be considered when di-4-ANEPPS is used in ischemia studies in rabbit. Delayed attenuated response of such hearts to ischemia might lead to misinterpretation of obtained results

    Cooperation of germ line JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia.

    No full text
    The role of somatic JAK2 mutations in clonal myeloproliferative neoplasms (MPNs) is well established. Recently, germ line JAK2 mutations were associated with polyclonal hereditary thrombocytosis and triple-negative MPNs. We studied a patient who inherited 2 heterozygous JAK2 mutations, E846D from the mother and R1063H from the father, and exhibited erythrocytosis and megakaryocytic atypia but normal platelet number. Culture of erythroid progenitors from the patient and his parents revealed hypersensitivity to erythropoietin (EPO). Using cellular models, we show that both E846D and R1063H variants lead to constitutive signaling (albeit much weaker than JAK2 V617F), and both weakly hyperactivate JAK2/STAT5 signaling only in the specific context of the EPO receptor (EPOR). JAK2 E846D exhibited slightly stronger effects than JAK2 R1063H and caused prolonged EPO-induced phosphorylation of JAK2/STAT5 via EPOR. We propose that JAK2 E846D predominantly contributes to erythrocytosis, but is not sufficient for the full pathological phenotype to develop. JAK2 R1063H, with very weak effect on JAK2/STAT5 signaling, is necessary to augment JAK2 activity caused by E846D above a threshold level leading to erythrocytosis with megakaryocyte abnormalities. Both mutations were detected in the germ line of rare polycythemia vera, as well as certain leukemia patients, suggesting that they might predispose to hematological malignancy. Stefan N. Constantinescu and Vladimir Divoky are co-last Autho

    Pentamethinium salts suppress key metastatic processes by regulating mitochondrial function and inhibiting dihydroorotate dehydrogenase respiration

    No full text
    Mitochondria generate energy and building blocks required for cellular growth and function. The notion that mitochondria are not involved in the cancer growth has been challenged in recent years together with the emerging idea of mitochondria as a promising therapeutic target for oncologic diseases. Pentamethinium salts, cyan dyes with positively charged nitrogen on the benzothiazole or indole part of the molecule, were originally designed as mitochondrial probes. In this study, we show that pentamethinium salts have a strong effect on mitochondria, suppressing cancer cell proliferation and migration. This is likely linked to the strong inhibitory effect of the salts on dihydroorotate dehydrogenase (DHODH)-dependent respiration that has a key role in the de novo pyrimidine synthesis pathway. We also show that pentamethinium salts cause oxidative stress, redistribution of mitochondria, and a decrease in mitochondria mass. In conclusion, pentamethinium salts present novel anti-cancer agents worthy of further studies.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore