35 research outputs found

    Breeding oat for resistance to the crown rust pathogen Puccinia coronata f. sp. avenae: achievements and prospects

    Get PDF
    Crown rust, caused by Puccinia coronata f. sp. avenae (Pca), is a significant impediment to global oat production. Some 98 alleles at 92 loci conferring resistance to Pca in Avena have been designated; however, allelic relationships and chromosomal locations of many of these are unknown. Long-term monitoring of Pca in Australia, North America and elsewhere has shown that it is highly variable even in the absence of sexual recombination, likely due to large pathogen populations that cycle between wild oat communities and oat crops. Efforts to develop cultivars with genetic resistance to Pca began in the 1950s. Based almost solely on all all-stage resistance, this has had temporary benefits but very limited success. The inability to eradicate wild oats, and their common occurrence in many oat growing regions, means that future strategies to control Pca must be based on the assumption of a large and variable prevailing pathogen population with high evolutionary potential, even if cultivars with durable resistance are deployed and grown widely. The presence of minor gene, additive APR to Pca in hexaploid oat germplasm opens the possibility of pyramiding several such genes to give high levels of resistance. The recent availability of reference genomes for diploid and hexaploid oat will undoubtedly accelerate efforts to discover, characterise and develop high throughput diagnostic markers to introgress and pyramid resistance to Pca in high yielding adapted oat germplasm.Financial support from Judith and David Coffey and family, the Grains Research and Development Corporation (GRDC: DAS00133, UOS1707-003RTX, UOS2104-001RTX) and the University of Sydney is gratefully acknowledged. Some of the unpublished research reported on was undertaken as part of a long running program on national cereal rust surveillance, conducted at the University of Sydney since 1921. EP is funded by Spanish Ministry of Science and Innovation [PID2019-104518RB-100], (AEI/FEDER, UE) and regional government through the AGR-253 group, the European Regional and Social Development Funds.Peer reviewe

    A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement

    Get PDF
    Citation: Chaffin, A. S., Huang, Y. F., Smith, S., Bekele, W. A., Babiker, E., Gnanesh, B. N., . . . Tinker, N. A. (2016). A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement. Plant Genome, 9(2), 21. doi:10.3835/plantgenome2015.10.0102Hexaploid oat (Avena sativa L., 2n = 6x = 42) is a member of the Poaceae family and has a large genome (similar to 12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice (Oryza sativa L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes

    SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species

    Get PDF
    A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources

    Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens.

    Get PDF
    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence

    An investigation of genetic variation among Australian isolates of Bipolaris sorokiniana from different cereal tissues and comparison of their abilities to cause spot blotch on barley

    Get PDF
    Bipolaris sorokiniana (teleomorph: Cochliobolus sativus), the causal agent of common root rot (CRR) and foliar spot blotch (SB) diseases in barley and wheat, is an economically important fungal pathogen worldwide. However, the relationship between these two diseases is poorly understood. Differences within Australian B. sorokiniana populations were revealed by cluster analysis of amplified fragment length polymorphisms in genomic DNA of 48 B. sorokiniana isolates collected from the northern grain-growing region of Australia. Isolates collected from SB infections clustered apart from isolates collected from CRR infections. A subset of 31 B. sorokiniana isolates was assessed for their abilities to cause SB infections on barley leaves using a differential set of 15 barley genotypes and three other cereal species. The pathogen samples included 14 isolates from CRR infections of either wheat or barley and 14 isolates from SB infections of barley. Phenotypic experiments revealed that isolates of B. sorokiniana collected from barley SB infections showed a high level of pathogenic variability across the differential set. In contrast, isolates from CRR infections produced significantly less SB disease on inoculated barley leaves. Cluster analysis of the phenotypic infection response scores grouped isolates into three pathogenicity clusters demonstrating low, intermediate or high pathogenicity. The results of this study suggest divergence within Australian populations of B. sorokiniana in relation to host tissue specificity
    corecore