71 research outputs found

    Effects of Light, Food Availability and Temperature Stress on the Function of Photosystem II and Photosystem I of Coral Symbionts

    Get PDF
    Background: Reef corals are heterotrophic coelenterates that achieve high productivity through their photosynthetic dinoflagellate symbionts. Excessive seawater temperature destabilises this symbiosis and causes corals to "bleach," lowering their photosynthetic capacity. Bleaching poses a serious threat to the persistence of coral reefs on a global scale. Despite expanding research on the causes of bleaching, the mechanisms remain a subject of debate.\ud \ud Methodology/Principal Findings: This study determined how light and food availability modulate the effects of temperature stress on photosynthesis in two reef coral species. We quantified the activities of Photosystem II, Photosystem I and whole chain electron transport under combinations of normal and stressful growth temperatures, moderate and high light levels and the presence or absence of feeding of the coral hosts. Our results show that PS1 function is comparatively robust against temperature stress in both species, whereas PS2 and whole chain electron transport are susceptible to temperature stress. In the symbiotic dinoflagellates of Stylophora pistillata the contents of chlorophyll and major photosynthetic complexes were primarily affected by food availability. In Turbinaria reniformis growth temperature was the dominant influence on the contents of the photosynthetic complexes. In both species feeding the host significantly protected photosynthetic function from high temperature stress.\ud \ud Conclusions/Significance: Our findings support the photoinhibition model of coral bleaching and demonstrate that PS1 is not a major site for thermal damage during bleaching events. Feeding mitigates bleaching in two scleractinian corals, so that reef responses to temperature stresses will likely be influenced by the coinciding availabilities of prey for the host

    Food effects on statolith composition of the common cuttlefish (Sepia officinalis)

    Get PDF
    The concentration of trace elements within cephalopod statoliths can provide a record of the environmental characteristics at the time of calcification. To reconstruct accurately the environmental characteristics at the time of calcification, it is important to understand the influence of as many factors as possible. To test the hypothesis that the elemental composition of cuttlefish statoliths could be influenced by diet, juvenile Sepia officinalis were fed either shrimp Crangon sp. or fish Clupea harengus under equal temperature and salinity regimes in laboratory experiments. Element concentrations in different regions of the statoliths (core–lateral dome–rostrum) were determined using laser ablation inductively coupled plasma mass spectrometry (LA- ICPMS). The ratios of Sr/Ca, Ba/Ca, Mn/Ca and Y/Ca in the statolith’s lateral dome of shrimp-fed cuttlefish were significantly higher than in the statolith’s lateral dome of fish-fed cuttlefish. Moreover, significant differences between statolith regions were found for all analysed elements. The fact that diet adds a considerable variation especially to Sr/Ca and Ba/Ca must be taken into account in future micro-chemical statolith studies targeting cephalopod’s life history

    Temperature Anomalies and Mortality Events in Marine Communities: Insights on Factors behind Differential Mortality Impacts in the NW Mediterranean

    Get PDF
    Two large-scale mass mortality events (MMEs) of unprecedented extent and severity affecting rocky benthic communities occurred during the summers of 1999 and 2003 along the coasts of the NW Mediterranean Sea. These mortality outbreaks were associated with positive thermal anomalies. In this study, we performed an analysis of inter-regional and inter-annual differences in temperature (T) conditions associated with MMEs of the red gorgonian Paramuricea clavata by analyzing high resolution T time series (hourly records for 3 to 8 years) from four regions of the NW Mediterranean with differing hydrological conditions and biological impacts. High resolution records allowed a detailed analysis using classical and new descriptors to characterize T anomalies. We were able to determine that the MMEs were triggered by two main types of positive thermal anomalies, with the first type being characterized by short periods (2 to 5 days) with high Mean T reaching more than 27°C in some regions and being associated with high intra-day and intra-period variability, while the second type of anomaly presented long duration (near one month) at warm T (24°C) with low intra-period variability. Inter-regional patterns arose; some regions displayed both types of anomalies, while others exhibited only one type. The results showed that T conditions should be considered as the main factor that explains the observed inter-regional and inter-annual differences in mortality impacts. In explaining these differences, the late timing of T anomalies, in addition to their magnitude was found to be determinant. Finally, by combining thermotolerance experimental data with the maximal T stress conditions observed in the four regions, we were able to determine the differential risk of mass mortality across regions. We conclude that expanding high resolution T series is important for the development of sound management and conservation plans to protect Mediterranean marine biodiversity in the face of climate change

    Sea surface temperature and salinity variability at Bermuda during the end of the Little Ice Age

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA3203, doi:10.1029/2007PA001532.We use geochemical and isotope measurements on a 225-year old brain coral (Diploria labyrinthiformis) from the south shore of Bermuda (64°W, 32°N) to construct a record of decadal-to-centennial-scale climate variability. The coral was collected alive, and annual density bands visible in X radiographs delineate cold and warm seasons allowing for precise dating. Coral skeletons incorporate strontium (Sr) and calcium (Ca) in relative proportions inversely to the sea surface temperature (SST) in which the skeleton is secreted. Previous studies on this and other coral colonies from this region document the ability to reconstruct mean annual and wintertime SST using Sr/Ca measurements ( Goodkin et al., 2007 , 2005). The coral-based records of SST for the past 2 centuries show abrupt shifts at both decadal and centennial timescales and suggest that SST at the end of the Little Ice Age (between 1840 and 1860) was 1.5° ± 0.4°C colder than today (1990s). Coral-reconstructed SST has a greater magnitude change than does a gridded instrumental SST record from this region. This may result from several physical processes including high rates of mesoscale eddy propagation in this region. Oxygen isotope values (δ 18O) of the coral skeleton reflect changes in both temperature and the δ 18O of seawater (δOw), where δOw is proportional to sea surface salinity (SSS). We show in this study that mean annual and wintertime δ 18O of the carbonate (δOc) are correlated to both SST and SSS, but a robust, quantitative measure of SSS is not found with present calibration data. In combination, however, the Sr/Ca and δOc qualitatively reconstruct lower salinities at the end of the Little Ice Age relative to modern day. Temperature changes agree with other records from the Bermuda region. Radiative and atmospheric forcing may explain some of the SST variability, but the scales of implied changes in SST and SSS indicate large-scale ocean circulation impacts as well.A WHOI OCCI Fellowship (N.F.G.), and grants from NSF (OCE-0402728) and WHOI (N.F.G., K.A.H., A.L.C., and M.S.M.) supported this work

    Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1374–1387, doi:10.1038/ismej.2011.12.Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially-dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter in the interaction between reefs and the surrounding ocean remains limited. Here we present the results of a four-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 µmol L-1 DOC and 5.5 X 108 cells L-1 offshore and 68 µmol L-1 DOC and 3.1 X 108 cells L-1 over the reef, respectively) across a four year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Beta-proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because fringing reefs do not exhibit long residence times (unlike those characteristic of atoll lagoons) and because oceanic DOC is generally recalcitrant to degradation by ambient microbial assemblages. Our findings thus have interesting implications for the role of oceanic DOM and bacterioplankton in the ecology and metabolism of reef ecosystems.This project was supported by the US National Science Foundation Moorea Coral Reef Long Term Ecological Research project (NSF OCE-0417412) through minigrants to CAC and NSF OCE-0927411 to CAC as well as the MIRADA-LTERs program (NSF DEB-0717390 to LAZ)

    The Minderoo-Monaco Commission on Plastics and Human Health

    Get PDF
    BACKGROUND: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. GOALS: The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. REPORT STRUCTURE: This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. PLASTICS: Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. PLASTIC LIFE CYCLE: The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. ENVIRONMENTAL FINDINGS: Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. HUMAN HEALTH FINDINGS: Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. ECONOMIC FINDINGS: Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded 250billion(2015Int250 billion (2015 Int) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded 920billion(2015Int920 billion (2015 Int). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be 341billion(2015Int341 billion (2015 Int).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. SOCIAL JUSTICE FINDINGS: The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. CONCLUSIONS: It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. RECOMMENDATIONS: To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. SUMMARY: This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense

    Environmental sensing and response genes in cnidaria : the chemical defensome in the sea anemone Nematostella vectensis

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Cell Biology and Toxicology 24 (2008): 483-502, doi:10.1007/s10565-008-9107-5.The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here I describe the genetic components of a ‘chemical defensome’ in the genome of N. vectensis, and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a ‘chemical defensome,’ and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria, and allow us to further illuminate the evolution of chemical defense gene networks.WHOI Ocean Life Institute and NIH R01-ES01591

    Effect of small variations in salinity on the rates of photosynthesis and respiration of the zooxanthellate coral Stylophora pistillata

    No full text
    International audienceThis paper deals with the effect of a long term (3 wk) change in salinity (increase or decrease of 2 to 4 psu) on the rates of photosynthesis and respiration of the zooxanthellate coral Stylophora pistillata. Colonies were exposed to 4 levels of salinity (34, 36, 38 and 40 psu, with 38 psu as the control salinity) and results were compared using I-factor ANOVAs. Salinity had a significant effect on the protein concentration. It was 30% higher at 38 psu than at the other salinities. It had also a significant effect on the rates of photosynthesis, respiration and on the P-g:R ratio. Gross maximal photosynthetic rates were 50% lower at 34, 36 and 40 psu than at 38 psu. The P-g:R ratio was always higher at the control salinity. Most of the colonies maintained at 40 psu died, and this was explained by a very low P-g:R ratio (<1). S. pistillata is therefore especially sensitive to small changes in salinity and seems to acclimate more easily to hypo- rather than to hypersaline conditions

    Release of dissolved amino acids by flagellates and ciliates grazing on bacteria

    No full text
    Release of amino acids was examined in the laboratory in the form of dissolved primary amine (DPA) by two marine planktonic protozoa (the oligotrichous ciliate, Strombidium sulcatum and the aplastidic flagellate Pseudobodo sp.) grazing on bacteria. DPA release rates were high (19-25 x 10(-6) and 1.8-2.3 x 10(-6) mu mol DPA cell(-1) h(-1) for flagellates and ciliates, respectively) during the exponential phase, when the ingestion rates were maximum. Release rates were lower during the other growth phases. The release of DPA accounted for 10 % (flagellates) and 16 % (ciliates) of the total nitrogen ingested. Our data suggest that the release of DPA by protozoa could play an important role in supporting bacterial and consequently autotrophic pico- and nanoplankton growth, especially in oligotrophic waters, where the release of phytoplanktonic dissolved organic matter is low.Les taux d'excrétion d'acides aminés par deux protozoaires planktoniques marins (un cilié oligotriche, Strombidium sulcatum, et un flagellé hétérotrophe, Pseudobodo sp.), nourris avec des bactéries inactivées (par choc de température) ont été quantifiés expérimentalement. Les valeurs maximales sont mesurées en début de phase exponentielle et sont comprises entre 19 et 25 × 10−6 μmol·cellule−1·h−1 pour les flagellés, entre 1,8 et 2,3 × 10−6 μmol·cellule−1·h−1 pour les ciliés. Elles correspondent aux valeurs maximales des taux d'ingestion. Les flagellés et ciliés excrètent au maximum 10 et 16 % de l'azote ingéré sous forme d'acides aminés. Les acides aminés provenant des protozoaires pourraient jouer un rôle important dans la croissance des bactéries et du pico- et nanoplancton autotrophe, notamment dans les milieux oligotrophes où l'excrétion phytoplanctonique de matière organique dissoute est faible
    corecore