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Abstract:  1 

Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient 2 

oceanic waters, where microbially-dominated food webs are supported largely by 3 

bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef 4 

organisms efficiently scavenge particulate organic matter and inorganic nutrients from 5 

advected oceanic waters, our understanding of the role of bacterioplankton and dissolved 6 

organic matter in the interaction between reefs and the surrounding ocean remains 7 

limited. Here we present the results of a four-year study conducted in a well-8 

characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where 9 

changes in bacterioplankton abundance and dissolved organic carbon (DOC) 10 

concentrations were quantified and bacterial community structure variation was 11 

examined along spatial gradients of the reef:ocean interface. Our results illustrate that the 12 

reef is consistently depleted in concentrations of both DOC and bacterioplankton relative 13 

to offshore waters (averaging 79 µmol L-1 DOC and 5.5 X 108 cells L-1 offshore and 68 14 

µmol L-1 DOC and 3.1 X 108 cells L-1 over the reef, respectively) across a four year time 15 

period. In addition, using a suite of culture-independent measures of bacterial community 16 

structure, we found consistent differentiation of reef bacterioplankton communities from 17 

those offshore or in a nearby embayment across all taxonomic levels.  Reef habitats were 18 

enriched in Gamma-, Delta-, and Beta-proteobacteria, Bacteriodetes, Actinobacteria and 19 

Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, 20 

Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance 21 

among nearshore habitats. Our observations indicate that this reef system removes 22 

oceanic DOC and exerts selective pressures on bacterioplankton community structure on 23 

timescales approximating reef water residence times, observations which are notable both 24 

because fringing reefs do not exhibit long residence times (unlike those characteristic of 25 

atoll lagoons) and because oceanic DOC is generally recalcitrant to degradation by 26 

ambient microbial assemblages. Our findings thus have interesting implications for the 27 

role of oceanic DOM and bacterioplankton in the ecology and metabolism of reef 28 

ecosystems. 29 

30 
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Introduction: 31 

Coral reefs are highly productive ecosystems that develop and thrive within the 32 

oligotrophic tropical and subtropical oceans (Darwin, 1889). Understanding the sources 33 

of nutrients and organic material that support coral reefs is central to predicting and 34 

managing how these ecosystems will respond to global change (Sorokin, 1990). 35 

Microbial communities play a dominant biogeochemical role in both reef and open-ocean 36 

environments, with heterotrophic microbial communities recycling more than half of net 37 

productivity in both ecosystem types (Cho and Azam, 1990; Ducklow, 1990). The largest 38 

pool of organic matter found in the ocean is a heterogenous mixture of dissolved 39 

compounds, a small portion of which is bioavailable to bacterioplankton on time scales of 40 

hours to days (Carlson, 2002).  This bioavailable component of dissolved organic carbon 41 

(DOC) is a key component of  the microbial loop (Azam et al., 1983; Pomeroy, 1974). 42 

Both theory (Crossland et al., 1991; Ducklow, 1990; Sorokin, 1990), and field-based 43 

models (Arias-Gonzalez et al., 1997; Grigg et al., 1984) indicate the importance of 44 

microbes to reef food webs and that understanding microbial processes is central to 45 

understanding the links between reef and ocean ecosystems. 46 

 47 

Odum and Odum (1955) put forward a widely cited theory for how reefs acquire the 48 

necessary macronutrients to sustain high productivity, positing that high flow rates and 49 

surface area allow reefs to concentrate nutrients and organic matter from dilute oceanic 50 

water, and specifically emphasizing the probable importance but largely unknown role of 51 

dissolved organic matter within the reef. Nutrient inputs from terrestrial sources 52 

(Fabricius, 2005), nitrogen-fixation (Lesser et al., 2004; Wiebe et al., 1975) or even 53 

geothermal endo-upwelling (Rougerie et al., 1992) cannot balance the nutrient 54 

requirements of coral reef systems (Crossland and Barnes, 1983). Understanding the 55 

interaction of bacterioplankton and dissolved organic matter (DOM) at the ocean:reef 56 

interface is important to interpreting nearshore ecosystem productivity and organic 57 

recycling. This is especially true if coral reefs are supported by oceanic subsidies through 58 

continual scavenging and transformation of nutrients and biomass from offshore waters.  59 

 60 



 4 

Tropical reef ecosystems support a diverse and active microbial community both directly 61 

associated with corals and in the surrounding water column (Ducklow, 1990). Recent 62 

research has emphasized the specificity and metabolic integration of surficial microbial 63 

communities associated with corals, sponges, and other key reef benthic macroorganisms 64 

(Rohwer et al., 2001; Wegley et al., 2007), yet we have a poor grasp of the composition 65 

of the planktonic microbial community (Dinsdale et al., 2008; Weinbauer et al., 2010). 66 

The community structure of the heterotrophic bacterioplankton is fundamentally linked to 67 

the bioavailability, composition, and metabolism of DOM and availability of inorganic 68 

nutrients in aquatic habitats (Cottrell and Kirchman, 2003; Giovannoni and Stingl, 2005), 69 

thus defining community connectivity and variation among nearshore habitats is 70 

important in clarifying the metabolic role of bacterioplankton in the reef ecosystem.  71 

 72 

We surveyed concentrations of bacterioplankton and DOC in a barrier/fringing reef-73 

embayment site of the Moorea Coral Reef Long Term Ecological Research (MCR–74 

LTER) site in Moorea, French Polynesia. The MCRLTER is an interdisciplinary, 75 

decadal-scale research program seeking to understand the processes that modulate 76 

ecosystem function, shape community structure and diversity, and determine abundance 77 

and dynamics of the coral reef communities of the South Pacific. Samples were collected 78 

seasonally over four years along depth profiles in three nearshore habitats (Forereef, 79 

Backreef, and Bay) and ~5 km Offshore. In addition, multiple synoptic surface surveys 80 

were conducted across the reef-ocean interface to characterize spatial gradients in DOC 81 

and bacterioplankton community structure. Our goal was to develop a solid foundation of 82 

spatiotemporal variability in DOC and bacterioplankton community structure at the reef-83 

ocean interface in the context of physical processes. We investigate the concept of the 84 

reef platform as a source or sink of water column DOC and bacterioplankton as oceanic 85 

inputs flow through the nearshore environment by answering three central questions: 1) 86 

whether reef environments contain concentrations of DOC that differ from their oceanic 87 

inputs, 2) whether bacterioplankton densities on the reef correlate with spatial patterns of 88 

DOC at the reef-ocean interface, and 3) whether bacterioplankton communities on coral 89 

reefs differ systematically from offshore habitats despite a seemingly high flushing rate. 90 
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We aimed to contextualize these questions through time and space in a system with 91 

consistent reef-ocean connectivity and well-defined physico-chemical gradients.  92 

 93 

94 
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Methods : 95 

Study location – This study was carried out in the vicinity of Paopao Bay on the north 96 

shore of the island of Moorea, French Polynesia (-17.48, -149.82, Fig. 1). Moorea is 1.5 - 97 

2 million years old (Neall and Trewick, 2008) with barrier reefs cresting within 1 km of 98 

the shore. Reef pass channels occur roughly every 5-10 km around the circumference of 99 

the island, typically corresponding to embayments of varying size, of which Paopao (aka 100 

Cook’s Bay) is one of the two largest: the Bay averages 25-30 m depth and Avaroa Pass 101 

is ~35 m deep (Hench et al., 2008). The Forereef slope has relatively high coral density 102 

and drops steeply (average slope 1:8) to depths exceeding 500 m within 1 km offshore. 103 

The Backreef platform includes a shallow (< 3 m) lagoon region comprising a mixture of 104 

dense corals and barren sands interspersed with massive coral “bommies” as well as a 105 

deeper (10-12 m) fringing reef region bordering the island. Waves drive water from the 106 

Forereef across the reef crest (averaging 0.2 m s-1 with negligible tidal influence) that 107 

rapidly drains laterally, mixing with the Bay and forming a steady offshore jet exiting 108 

through the pass (Hench et al., 2008). These three hydraulically interconnected habitats 109 

(Bay, Forereef, and Backreef), as well as Offshore locations 1-6 km north of the island, 110 

are referred to throughout the manuscript and both synoptic and time-series sampling 111 

strategies were designed to clarify temporal and spatial variation among the habitats.  112 

 113 

Sample collection and storage – Samples were collected over a three-day period 2 to 3 114 

times each year from 2005 through 2009. DOC and bacterioplankton were collected in 115 

ten depth-profile time-series sampling events over this period and two additional high-116 

resolution grid surveys (Aug.-Sep. 2008 and 2009; Fig. 1). All samples were stored at in 117 

situ temperatures in the dark for up to 2 hours before processing. Seasonal time-series 118 

samples were collected at discrete depths (1, 5 and 10 m) via 8L teflon-coated acid-rinsed 119 

Niskin bottles and synoptic grid samples were hand-collected at ~0.1 m depth in acid-120 

washed polycarbonate bottles. In synoptic grid surveys DOC was sampled directly from 121 

the collection bottle through combusted glass fiber filters (Whatman GF/F) while in 122 

seasonal time-series sampling total organic carbon (TOC) was sampled directly from 123 

Niskin bottles without filtration. Particulate organic carbon is a small component of the 124 

TOC pool of Moorean waters (averaging 3% to 5% both offshore and in the reef 125 
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environments) and does not differ significantly between Offshore and BackReef habitats 126 

(n = 21, p = 0.12), thus the temporal and spatial dynamics of the TOC pool are primarily 127 

due to changes in the DOC pool (Hansell and Carlson, 1998) and the measurement of 128 

TOC from the seasonal sampling is henceforth referred to as DOC throughout this 129 

manuscript. All DOC samples were collected into acid-leached, Nanopure flushed, 130 

sample-rinsed 60 mL HDPE bottles and stored frozen at -20 °C until analysis (Carlson et 131 

al., 2010). Unfiltered samples for bacterioplankton abundance were fixed with 132 

paraformaldehyde (0.4% final concentration) and stored frozen (-80 °C) within 30 133 

minutes of fixation. Nucleic acid samples from synoptic Austral winter surveys (Aug.-134 

Sep. 2008 and 2009) were collected by gravity-filtering 0.8-1.5 L water through a 0.2 μm 135 

polyethersulfone filter cartridge (Millipore Sterivex), preserved frozen with 1.7 mL 136 

sucrose lysis buffer (for fingerprinting; 40 mmol L-1 ethylenediaminetetraacetic acid, 50 137 

mmol L-1 Tris-HCl, 750 mmol L-1 sucrose, 400 mmol L-1 NaCl, pH 8.0). A single Austral 138 

summer sampling event for pyrosequencing (Jan. 2008) collected duplicate 1L whole 139 

water samples in sterile polyethylene terephthalatebottles from the upper 5 m. Samples 140 

were filtered and stored as above except that Puregene Lysis Buffer (Qiagen) was used in 141 

place of sucrose lysis buffer. 142 

 143 

DOC concentration measurement – Samples were thawed at room temperature, vortexed 144 

to mix thoroughly, decanted into precombusted borosilicate vials with acid-washed 145 

teflon-lined lids, and analyzed via high temperature oxidation on a modified Shimadzu 146 

TOC-V modified according to Carlson et al. (2010). UV- oxidized deionized water with 147 

organics removed (Barnstead Nanopur Diamond) was used for blank correction for all 148 

samples. Each system run was calibrated with both potassium hydrogen pthalate 149 

standards (4 point curve 25 – 100 μM) referenced against low carbon deep Sargasso Sea 150 

reference waters (2600 m) and surface Sargasso Sea water every 6 – 8 analyses (Carlson 151 

et al., 2004; Hansell and Carlson, 1998) calibrated with DOC Consensus Reference 152 

Waters (Hansell, 2005).  153 

 154 

Bacterioplankton abundance measurement – Fixed samples were thawed, mixed, stained 155 

with 1X SYBR® Green I (Invitrogen) 30 minutes (dark room temperature) and analyzed 156 
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within 3 hours. We empirically determined that the integrity of the stain yielded 157 

consistent abundance measurements throughout a minimum of three hours measured at 158 

20 minute intervals. Samples were counted using a flow cytometer (LSR II; BD 159 

Biosciences) equipped with a high throughput sampler (HTS), Coherent Sapphire 488nm 160 

laser, and a default suite of 6 detectors (side-scatter and forward-scatter photodiodes and 161 

green, orange, red, and far-red photomultipliers). Using the HTS syringe pumps, a known 162 

sample volume (45 μL) was injected at a steady rate (0.5 μL sec-1) such that data 163 

acquisition was maintained at <1000 events sec-1 and >10,000 bacterial events were 164 

recorded for each sample over a period of at least 90 sec. A minimum green fluorescence 165 

threshold (channel 200) was assigned to exclude unstained particles and photomultiplier 166 

voltages were adjusted upward such that ~10% of events were visible as noise on each 167 

channel to increase signal:noise and the clarity of population differentiation. Two 168 

dimensional gating was applied on graphs of scatter vs. green fluorescence to remove 169 

noise (populations averaging zero side scatter). Bacterial concentration calculations were 170 

corrected for minor dilution with stain and fixative. A subset of samples counted both by 171 

flow cytometry and  4',6-diamidino-2-phenylindole (DAPI) epifluorescence microscopy 172 

(Porter and Feig, 1980) yielded a strong relationship between the two measurements, with 173 

cytometry counts approximately 20% less than microscopy counts (Model II regression 174 

slope = 0.82, n = 75, r2 = 0.64, p < 0.001). 175 

 176 

Bacterial community structure measurement – We used two culture-independent 177 

approaches to assess bacterial community structure from 16S rRNA gene sequence 178 

information in DNA extracted from 0.2 μm membranes. Terminal restriction fragment 179 

length polymorphism (TRFLP) was used to analyze ~100 samples collected synoptically 180 

in Aug.-Sep. of 2008 and 2009 according to Nelson (2009). In brief, filtered cells were 181 

lysed by incubating preserved filters amended to 1% sodium dodecyl sulfate and 8 µg 182 

mL-1 Proteinase K at 60°C and a portion was extracted using the DNEasy kit (Qiagen). 183 

The polymerase chain reaction with primers 8f (AGRGTTYGATYMTGGCTCAG) and 184 

519r (GWATTACCGCGGCKGCTG) was used to amplify the 16S rRNA gene (30 185 

cycles of 94°C 30 sec, 57°C 60 sec, 72°C 120 sec) according to Nelson (2009). Products 186 

were gel-extracted via QiaEx (Qiagen) and digested 4 hours at 37°C with enzyme HaeIII 187 
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(New England Biolabs) followed by enzyme inactivation (20 min 80°C). Fragment 188 

analysis of formamide-saturated and heat-denatured samples via capillary sequencer 189 

(Applied Biosystems 3730XL) was conducted at the UC Berkeley DNA Sequencing 190 

Facility using a custom sizing standard (20 sizes over the range 30 to 650 base pairs; 191 

Bioventures). Electropherogram peak areas in the 30-550 bp range were relativized by 192 

sample totals, aligned and analyzed according to Nelson (2009), with peaks less than 193 

0.5% of total peak area excluded from analysis. Clone libraries (sequences of 100 random 194 

16S rRNA amplicons using identical primers from water collected from the Backreef in 195 

March of 2007: Genbank accession numbers HQ443320-HQ443409) were used to assign 196 

putative sequence-based phylogenetic information to terminal restriction fragments of 197 

interest as previously described  (Nelson, 2009). Amplicon pyrosequencing of the V6 198 

hypervariable region of the bacterial 16S rRNA gene was conducted on samples collected 199 

Jan. 2008 (Table S1) using bacterial primers 967f and 1046r on DNA extracted and 200 

amplified according to (Huber et al., 2007).  These 16S rRNA gene V6 amplicon 201 

sequences have been deposited in the National Center for Biotechnology Information 202 

(NCBI) Sequence Read Archive under the accession number SRPXXXXXX. All 203 

statistical analyses and heatmaps were conducted using JMP (v. 8; SAS Institute); unless 204 

otherwise noted, p-values for differences between habitats are derived from ANOVA 205 

with Tukey post hoc tests to control for multiple comparisons. All community structure 206 

analyses were performed with Primer-E (v. 6; Clarke et al., 2006). All contour plots were 207 

generated with Ocean Data View v4.3 (Schlitzer 2010) using DIVA gridding with 30X30 208 

scale-length to avoid overinterpolation, a method well-optimized for sampling points 209 

which show spatial variation in density.210 
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Results: 211 

Spatial gradients of DOC and bacterioplankton concentrations- Both surface DOC and 212 

bacterioplankton concentrations were depleted in the Backreef relative to Offshore waters 213 

during synoptic sampling surveys in September of 2008 and 2009 (Figs. 2 and S1). In 214 

these surface surveys DOC concentrations in the Forereef and Bay were intermediate 215 

between Backreef and Offshore endpoints while bacterioplankton abundances were 216 

elevated in the Bay relative to other habitats. These spatial patterns held constant over 217 

two adjacent sampling dates in 2008 between which a common strong southerly wind 218 

(known locally as a mara’amu) produced substantial surface waves and sediment 219 

resuspension (Figs. S1b-e). 220 

 221 

The gradients of DOC concentrations and bacterioplankton densities observed during the 222 

synoptic spatial survey (Austral winter 2008-2009) were also maintained through time as 223 

revealed from the seasonal sampling of bay, reef and offshore habitats from 2005-2009 224 

(Fig 3). The Backreef environment was significantly lower in DOC concentration relative 225 

to Offshore waters over the 2005-2009 sampling period regardless of season (ANOVA 226 

with Tukey post hoc tests comparing concentrations in each habitat p < 0.05; Figs. 3a and 227 

3b) and was consistently depleted in bacterioplankton relative to all other habitats (Figs. 228 

3c and 3d). During austral winter differentiation between habitats was more pronounced, 229 

with elevated DOC in the Forereef relative to the other nearshore habitats (but still less 230 

than offshore; Fig. 3b). Winter bacterioplankton densities in the Bay were elevated 231 

relative to all other habitats and exceeded summer Bay bacterioplankton densities (Fig. 232 

3d). DOC and bacterioplankton vertical variability on any sampling date was much 233 

smaller than  lateral variability among habitats from Backreef  through Offshore (e.g. Fig. 234 

S1a) with no statistical effect of sampling depth on later habitat differentiation across 235 

dates (ANCOVA was used to test the significance of interaction between habitat and 236 

depth in explaining variation in DOC and bacterioplankton concentrations; habitat*depth 237 

p = 0.19 and 0.37 respectively). Moreover, there was no evidence for persistent 238 

stratification of concentrations in the upper 10 m of Forereef, Backreef, or Offshore 239 

habitats across seasons (although surface bacterioplankton concentrations in the Bay 240 

exceeded those at 10 m when grouped across the time series; p = 0.02). 241 
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 242 

Concentrations of phosphate, nitrite, and silica did not differ significantly among the four 243 

habitats over the 2005-2009 time series averaged over the upper 10 m (Fig. S2. p > 0.10 244 

in either season or grouped across seasons). In winter only, nitrate concentrations were 245 

greater on average in the Backreef (mean 0.46 µmol L-1) than Offshore (mean 0.13 µmol 246 

L-1; p = 0.012, n = 23). Particulate organic stocks (carbon, nitrogen, and chlorophyll a) 247 

were significantly higher within the Bay relative to other locations (p < 0.05) across the 248 

seasonal dataset but not significantly different between Forereef, Backreef, and Offshore 249 

sampling points in either season or grouped across seasons (p > 0.05).  250 

 251 

Synoptic spatial differentiation of bacterioplankton community structure -252 

Bacterioplankton community structure was found to be significantly different among the 253 

Offshore, Backreef, Forereef and Bay habitats on multiple dates and using different 254 

methods of community characterization, including TRFLP, cloning, and amplicon 255 

pyrosequencing (Figs. 4-6, S3-5).  256 

 257 

TRFLP fingerprinting- Synoptic winter surveys in Aug.-Sep. of 2008 and 2009 revealed 258 

significant differences between habitats each year in TRFLP fingerprints of 259 

bacterioplankton community structure (Figs. 4 and S3; 2-way nested ANOSIM tested the 260 

significance of clustering by habitat within years R = 0.76, p < 0.001). Hierarchical 261 

clustering of surface samples collected 1 Sep 2009 according to relative abundance of 262 

TRFLP phylotypes (Figure 4) matched habitat clustering patterns observed during 263 

smaller surveys in 2008 (Fig. S3a) and showed minimal depth variation (Fig. S3b). The 264 

dominant nonmetric multidimensional scaling axis of community variation (53.8% 265 

variation) paralleled the onshore to offshore habitat gradient in both years when ordinated 266 

together. While the relationships between habitats were consistent between 2008 and 267 

2009 the two years differed significantly overall  (ANOSIM tested the significance of 268 

clustering by year R = 0.60, p < 0.001). As with patterns of bacterioplankton and DOC 269 

depletion, these spatial patterns in community differentiation held constant over two 270 

adjacent sampling dates in 2008 separated by a significant storm event (Figs. S3c-d). 271 

 272 
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Clone libraries - Using a random clone library, phylogenetic classifications were 273 

putatively assigned to 33 of 120 terminal restriction fragments (TRFs) found in the 2008-274 

09 synoptic surveys by measuring TRF lengths of cloned 16S amplicons (Fig. S5). The 275 

two ecotypes of SAR11 found in the clone library showed different spatial patterns of 276 

relative abundance: Group Ia was relatively homogenously distributed but slightly 277 

enriched in the nearshore and Group II was contrastingly rare in the Bay but markedly 278 

enriched within the Backreef (Figs. 5d and 5a, respectively). Synechococcus were 279 

relatively dominant throughout the surface waters but increased in relative abundance 280 

offshore (Fig. 5b). An unidentified member of the SAR116 clade also showed a marked 281 

increase in relative abundance offshore, becoming relatively rare in the Backreef and Bay 282 

habitats (Fig. 5e). Two distinct members of the Flavobacteriaceae showed contrasting 283 

distributions, with one enriched only in the Forereef (Fig. 5c) and another depleted only 284 

in the Backreef (Fig. 5f). A resemblance matrix comprised solely of these six taxa was 285 

correlated with overall community resemblance among sampling locations and years 286 

(rMantel = 0.82, p < 0.01), demonstrating that the variation in these six taxa matched the 287 

overall community differentiation patterns among habitats. 288 

 289 

Pyrosequencing- 16S rRNA gene amplicon sequence data also revealed similar habitat 290 

partitioning to that demonstrated in TRFLP analyses (Fig 6) based on > 237,000 v6 tags 291 

analyzed among six habitats along the reef-offshore gradient (Table S1). Methodological 292 

replicate samples (~ 20,000 sequences each) were not significantly different (SIMPROF 293 

p > 0.05) but the community structure of each nearshore habitat was significantly 294 

different (SIMPROF p < 0.05, Fig 6). Spatial differences in community structure were 295 

due to changes in the presence or absence of broad Bacteria phylotypes rather than minor 296 

shifts in the relative abundance of taxonomically similar OTUs, as patterns in community 297 

differentiation among habitats were consistent whether data were analyzed at very fine or 298 

course taxonomic scale (reference OTUs or Order level) and whether analyzed using 299 

sequence relative abundance or presence/absence data (Fig S4). These sensitivity 300 

comparisons were only carried out using pyrosequencing data, as fingerprinting methods 301 

(such as TRFLP) lack the phylogenetic resolution needed to contrast taxonomic levels 302 
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and lack the sequence frequency resolution necessary to declare a taxon absent in 303 

presence/absence analyses.  304 

 305 

We identified three primary community types at the 90% Bray-Curtis similarity level 306 

when samples were clustered according to sequence frequency of bacterial Classes (Fig. 307 

6). Backreef habitats were relatively enriched in Beta- and Gamma-proteobacteria, 308 

Firmicutes, and Bacteriodetes and Forereef/Bay habitats were relatively enriched in 309 

Actinobacteria, Deltaproteobacteria, and Planctomycetes compared with offshore 310 

habitats. All samples were dominated by Alphaproteobacteria (ranging from 36 to 48% 311 

and averaging 42.6%) and Cyanobacteria (ranging from 21 to 39% and averaging 28.7%) 312 

with Gammaproteobacteria, Betaproteobacteria, and Flavobacteria also contributing more 313 

than 1% of sequences on average 16%, 1.2%, and 4.4% respectively; Fig. 6). The 314 

majority of bacterial classes found via pyrosequencing were present at low abundances (< 315 

0.5% of sequences; Fig 6), suggesting that they were not included in TRFLP analyses. As 316 

expected, we found elevated levels of bacterial classes known to contain various human 317 

pathogens, environmental copiotrophs, and coral-associated  microbes, including various 318 

Gram-positive groups (Bacilli, Clostridia, Actinobacteria), Gammproteobacteria, and 319 

Bacteriodetes (Flavobacteria, Sphingobacteria, Bacteroidia), in the nearshore habitats 320 

relative to the open ocean. 321 

 322 

 323 

324 
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Discussion: 325 

Our seasonal and synoptic surveys comprised more than 100 independent samples and 326 

unambiguously demonstrated that the Backreef platform behind the crest is consistently 327 

depleted in both DOC and bacterioplankton relative to the open ocean and Forereef slope 328 

habitats across seasons and years (Figs. 2, 3, S1). Using multiple culture-independent 329 

methods to characterize bacterial community structure, we found distinct community 330 

differentiation among nearshore habitats in synoptic surveys at different times of year, 331 

with clear spatial gradients in identified clades, as well as distinct nearshore-offshore 332 

trends in relative abundance of broad bacterial Classes (Figs. 4-6, S3-3). Together these 333 

observations are notable because they indicate that reef physical and biological processes 334 

work rapidly in maintaining a planktonic microbial ecosystem fundamentally altered 335 

from the surrounding oceans (residence times of Moorea’s reefs have been estimated on 336 

the order of hours to days; Delesalle and Sournia, 1992; Hench et al., 2008; Lenhardt, 337 

1991). The potential for reefs to rapidly alter the density of bacterioplankton is well 338 

supported by studies reporting both depletion of bacterioplankton in reef water columns 339 

relative to oceanic waters (Ayukai, 1995; Gast et al., 1998) and enhanced removal of 340 

bacterioplankton biomass with proximity to reef benthic organisms (Genin et al., 2009; 341 

Houlbreque et al., 2006; Scheffers et al., 2004).  342 

 343 

Our observations of altered bacterioplankton community structure over the reef further 344 

suggest that such removal processes may be selective or complemented by increased 345 

abundance of reef-specific taxa. However, we are not aware of another study 346 

demonstrating consistently depleted DOC in reef environments relative to the open 347 

ocean, although recent observations indicate the potential for the phenomenon to be 348 

widespread (Dinsdale et al., 2008; Suzuki et al., 2001). Instead most studies in rapidly 349 

flushed reefs show either diel increases in DOC above offshore concentrations (Hata et 350 

al., 2002; Van Duyl and Gast, 2001) or consistently elevated concentrations of DOC 351 

(Torréton et al., 1997). Reef DOC depletion on residence timescales of hours to days is 352 

surprising and has significant biogeochemical implications because the bulk DOC pool in 353 

the surface waters of subtropical gyres (such as those surrounding Moorea) has been 354 

reported to be recalcitrant material resistant to rapid microbial degradation by surface 355 
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water microbial assemblages (Carlson, 2002; Carlson and Ducklow, 1996; Carlson et al., 356 

2004; Cherrier et al., 1996). Our results suggest that benthic and/or planktonic 357 

communities within the reef ecosystem have the potential to rapidly and efficiently 358 

consume both dissolved material and bacterioplankton cells, but both biogeochemical and 359 

physical processes must also be considered as mechanisms to explain the patterns 360 

observed. 361 

 362 

Evidence for physical mechanisms of DOC and bacterioplankton community alteration 363 

on the reef - Dilution of nearshore waters by groundwater, terrestrial runoff, or 364 

geothermal endo-upwelling (Rougerie et al., 1992) could potentially cause reduced DOC 365 

concentrations and altered bacterioplankton community structure within the nearshore 366 

environment, but three lines of evidence rule this mechanism out. First, any dilution 367 

would be evident in salinity or temperature, but neither show differences in mean values 368 

between Backreef and Offshore waters through time, although riverine inputs do exert a 369 

small but significant influence on the Bay, making it slightly warmer (28.17 vs 27.81°C) 370 

and less saline (salinities of 35.99 vs 36.05) than the other three habitats on average (p < 371 

0.01). Second, the concentration of DOC in Paopao stream (the primary freshwater 372 

source for the system) in Sept 2008 was 34.2 μmol L-1, markedly lower than the surface 373 

ocean but concentrated enough to require an unreasonably large freshwater input to yield 374 

the ~13% (~8 μmol L-1) average DOC depletion observed in the nearshore regions. Third, 375 

DOC concentrations in island porewaters in neighboring Tahiti increase dramatically 376 

with depth (exceeding 2 mmol L-1 within 20m; Fichez et al., 1996), suggesting that 377 

groundwater inputs would increase DOC concentrations rather than contribute to 378 

depletion.  379 

 380 

DOC and bacterioplankton depletion in the Backreef could be caused by aggregation of 381 

organic particles (Mari et al., 2007; Passow and Alldredge, 1994; Verdugo et al., 2004) 382 

and subsequent flux to the sediment or adsorption onto reef structures. However, 383 

increased aggregation should be reflected in elevated concentrations of particulate 384 

organic carbon on the reef (which is not observed; Fig S2) unless aggregates are rapidly 385 

consumed by metazoans within the reef. DOM adsorbtion to the high-porosity carbonate 386 
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sands common in the Backreef habitats of Moorea is another abiotic removal process that 387 

may be important and has been demonstrated in similar environments (Hillgärtner et al., 388 

2001; Suess, 1970). However, this process is difficult to distinguish from heterotrophic 389 

reef sediment biofilms that can remove DOM (Wild et al., 2006; Wild et al., 2004). 390 

While the Backreef habitats in Moorea have abundant carbonate sands, preliminary 391 

results show no difference in DOC concentrations in these surficial sediments (data not 392 

shown). 393 

 394 

Evidence for biological mechanisms of DOC and bacterioplankton community alteration 395 

on the reef –Three lines of evidence indicate that DOC and bacterioplankton depletion 396 

are the result of selective biological removal processes rather than physical dilution or 397 

aggregation mechanisms. First, we found no evidence of similar reef depletion in 398 

inorganic nutrients or particulate organic matter relative to offshore waters (Fig S2); 399 

dilution would be expected to nonselectively alter concentrations of many solutes and 400 

aggregation would be expected to decrease nearshore particle abundance through sinking 401 

export. Second, the Forereef, Backreef, Bay, and Offshore habitats support distinct 402 

bacterioplankton communities (Figs. 4-6, S3-S4), implying selective pressures within the 403 

water column operating on bacterioplankton at reef residence timescales. Third, DOC and 404 

bacterioplankton depletion patterns appear to be regulated in part by reef water residence 405 

time, implying a mechanism of active removal.  The difference between offshore and 406 

backreef DOC and bacterioplankton concentrations is significantly less when wave 407 

energy was greatest in the Austral summer (Fig. 3, (Hench et al., 2008) and wave energy 408 

flux (the product of the square of significant wave height and the wave period averaged 409 

over the 24 hours prior to sampling) was a strong and significant predictor of Backreef 410 

DOC and bacterioplankton proportional depletion (Backreef:Offshore) among sampling 411 

dates 2005-2009 (DOC: n = 7, r2 = 0.63, p = 0.032; Bacterioplankton: n = 9, r2 = 0.66, p 412 

= 0.008). In addition, the potential for water exiting the reef passes to be retained and 413 

recycled back across the reef crest (Hench et al., 2008) has the potential to increase the 414 

practical reef residence time of water beyond estimates based solely on flushing rates or 415 

control volumes (Delesalle and Sournia, 1992; Lenhardt, 1991; Reidenbach et al., 2002; 416 

Torréton et al., 2007), thus increasing contact time with reef heterotrophic organisms. 417 
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 418 

Benthic and planktonic processes removing DOC and altering reef bacterioplankton 419 

communities – Biological processes contributing to DOC and bacterioplankton depletion 420 

and alteration of bacterioplankton community structure in the backreef may be associated 421 

with the planktonic environment, reef sediments, or diverse benthic filter-feeding 422 

metazoans. Corals may rapidly consume DOC and bacterioplankton (Sorokin, 1973) 423 

although many recent studies show corals to be sources, rather than sinks, for DOC 424 

(Ferrier-Pages et al., 1998; Hata et al., 2002; Nakajima et al., 2009; Van Duyl and Gast, 425 

2001). Recent work has demonstrated the potential for sponges to consume both DOC 426 

and bacterioplankton at biogeochemically significant rates (De Goeij et al., 2008; de 427 

Goeij and Van Duyl, 2007; Van Duyl et al., 2006; Yahel et al., 2003). However, 428 

conspicuous sponge taxa, which exhibit the highest filtration rates (Southwell et al., 429 

2008), are virtually absent from our study area, and even inconspicuous benthic sponges 430 

cover less than 1% of the reef benthos in Moorea on average (Adjeroud, 1997, 431 

http://mcr.lternet.edu/data/), although cryptic coelobite communities can increase reef 432 

surface area sevenfold and rapidly remove both DOC and bacterioplankton (de Goeij and 433 

Van Duyl, 2007; Richter et al., 2001; Scheffers et al., 2004).  434 

 435 

Accumulated DOM in the surface waters of the tropical and subtropical oceanic gyres has 436 

been shown to be resistant to rapid utilization by extant microbial assemblages (Carlson 437 

2002, Carlson et al., 2004). Our study suggests that the water overlying reefs exhibits a 438 

different bacterioplankton community from that maintained in the open ocean, and given 439 

the depletion of DOC relative to the offshore waters that bathe and exchange with the 440 

reef system our study indicates that these communities may be able to consume semi-441 

labile dissolved compounds from oceanic waters more rapidly and efficiently than 442 

communities outside of the reef. Labile DOM derived from coral or algae may facilitate 443 

the co-metabolism of recalcitrant DOM by reef bacterioplankton communities (Barott et 444 

al., 2009; Dinsdale et al., 2008; Ducklow, 1990; Smith et al., 2006). Bacterial production 445 

rates are typically elevated in reef environments (Gast et al., 1999; Moriarty et al., 1985; 446 

Torréton and Dufour, 1996; Van Duyl and Gast, 2001), and understanding the sources of 447 
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DOM supporting this production and the fate of this heterotrophic productivity is crucial 448 

to developing a coral reef ecosystem model.  449 

 450 

 451 

Nearshore bacterioplankton community differentiation by habitat - The observed 452 

gradients in the relative abundance of specific bacterioplankton phylotypes among 453 

Offshore, Forereef, Backreef, and Bay habitats (Figs. 4-6, S3) were clear and consistent 454 

among years (2008 and 2009; Figs 4 and S3), seasons (austral summer and winter 2008; 455 

(Figs 5 and S3), and methods (16S rRNA V6 amplicon pyrosequencing and TRFLP 456 

fingerprinting; Figs. 4, 6, S3). The community differences were not solely a result of 457 

variations in relative abundance of taxa as showed similar habitat differentiation patterns 458 

when analyzed using presence/absence data across a wide range of taxonomic 459 

aggregations (Fig. S4). These results are consistent with the patterns observed by 460 

(Weinbauer et al., 2010) in a lagoonal system with much longer residence time. Two 461 

phylotypes belonging to different alphaproteobacterial SAR11 sub-clades (Group Ia and 462 

Group II) increased in relative abundance within the reef relative to the open ocean (Figs. 463 

5a, 5d). Notably, only the Group Ia phylotype was also elevated in the freshwater-464 

influenced bay samples. A member of a second alphaproteobacterial clade, SAR116, did 465 

not show this pattern of nearshore persistence, instead it exhibited higher relative 466 

abundance offshore, suggesting that this phylotype may be selectively grazed or a poor 467 

competitor for substrates in the nearshore habitats (Fig. 5e). Consistent with the 468 

pyrosequencing results, both Flavobacterial phylotypes (Figs. 5c and 5f) were relatively 469 

enriched in the Bay and Forereef environments, indicating that this group may thrive in 470 

the deeper, more particle-rich waters found in these regions relative to the shallower 471 

Backreef lagoons. 472 

 473 

The deep-pyrosequencing approach (averaging 40,000 sequences per habitat, Table S1) 474 

elucidated clear gradients in rare taxa, many of which were < 0.5% of total sequences 475 

(and thus undetectable by TRFLP, which excluded fragments < 0.5% relative 476 

abundance), even when aggregated at the Class level (Fig. 5). The rare bacterial classes 477 

showing clear evidence of enrichment in the Backreef relative to offshore waters included 478 
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a number of groups containing potential pathogens of Metazoa (Bacilli, Clostridia, 479 

Actinobacteria, Bacteroidia, Sphingobacteria), as well as several groups associated more 480 

with environmental samples or specific redox transformations (Acidobacteria, Nitrospira, 481 

Fusobacteria, Verrucomicrobia, Planctomycetes, Lentisphaeria). Elevated levels of 482 

nitrifying bacteria have been reported in other reef habitats (Beman et al., 2007; Wegley 483 

et al., 2007) and may provide a mechanism explaining the elevated winter concentrations 484 

of nitrate in the Backreef (Fig. S2). The three reef water column environments sampled 485 

by pyrosequencing (Forereef, Backreef: Lagoon, and Backreef: Fringe) showed markedly 486 

higher numbers of bacterial taxa (OTUs) for equal sampling intensity (sequence reads) 487 

compared with Offshore and Bay habitats (Table S1). This elevated richness in reef 488 

microorganismal communities would be consistent with the macroorganismal dogma of 489 

reefs harboring a greater diversity of organisms and microhabitats than the surrounding 490 

oceans.  491 

 492 

Implications for coral reef microbial and ecosystem ecology - Reefs are frequently 493 

declared to have elevated concentrations of dissolved organic matter relative to offshore 494 

waters (Hatcher, 1983; Torréton et al., 1997), but our data suggest that rapidly flushed 495 

reefs may exhibit depleted DOC. A similar discrepancy exists in the literature for 496 

bacterioplankton, with evidence for corals enhancing reef bacterial density (Seymour et 497 

al., 2005a; Seymour et al., 2005b; Van Duyl and Gast, 2001) or reducing reef bacterial 498 

density (Ayukai, 1995; Gast et al., 1998). Many previous studies of DOC and 499 

bacterioplankton have focused on atoll lagoon systems with relatively long residence 500 

times and potential accumulation of organic material, explaining the widespread 501 

perception that reefs exhibit elevated levels of organic matter and bacteria (Linley and 502 

Koop, 1986; Sakka et al., 2002; Torreton and Dufour, 1996; Torréton et al., 1997; 503 

Yoshinaga et al., 1991). Our results fit well with observations that indicators of 504 

eutrophication (concentrations of DOM and particulate organics, bacterial and 505 

phytoplankton biomass and production, and rates of organic aggregate formation) 506 

increase along a continuum of increasing reef residence time and declining oceanic 507 

connectivity (from rapid-flushing fringing reefs to isolated atoll lagoons; Mari et al., 508 

2007; Pages and Andréfouët, 2001; Pagès et al., 2001; Torréton et al., 2002). Further 509 
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development of comparative models integrating reef habitats of varying residence time 510 

would help clarify the degree to which different reefs are supported by oceanic DOM 511 

inputs and planktonic microbial recycling (Torreton, 1999).  512 

 513 

The removal of semi-labile oceanic DOC by reefs suggests an unrecognized potential for 514 

net heterotrophy of the nearshore ecosystem. Although reef ecosystems exhibit some of 515 

the highest rates of gross primary production on Earth (Sorokin, 1990), their net 516 

ecosystem metabolism is frequently estimated as only weakly positive because of the 517 

intense heterotrophic processes associated with reef organic matter recycling (Ducklow, 518 

1990). In fact, a number of studies have suggested reefs to be net heterotrophic, acting as 519 

sources of carbon dioxide to the atmosphere (Gattuso et al., 1999; Gattuso et al., 1996; 520 

Suzuki and Kawahata, 2003; Ware et al., 1992). Recent modeling studies have indicated 521 

that more than half of reef primary production enters the food web through microbial 522 

consumption processes, potentially reducing overall energetic efficiency but retaining 523 

valuable macro- and micro-nutrients within the system (Sorokin, 1990; Arias-Gonzalez et 524 

al., 1997). The results of Ferrier-Pages et al. (1998) demonstrating rapid uptake of coral-525 

released DOM by bacterioplankton (~14% of coral net daily production) indicate that 526 

planktonic bacterial communities play a key role in coral reef food webs. Our results lend 527 

support to this conceptualization of reefs as efficient scavengers and recyclers of organic 528 

material with an active planktonic bacterial community unique from the open ocean 529 

playing a key role in nearshore ecosystem function. 530 

 531 

Conclusions – Our study combines long-term, spatially explicit data with high-resolution 532 

synoptic surveys to present clear evidence that the fringing and barrier reef habitats of 533 

Moorea are depleted in DOC and bacterioplankton relative to the surrounding ocean. In 534 

addition, we show clear patterns in bacterioplankton community structure, with 535 

differentiation of Offshore, Forereef, Backreef and Bay communities maintained in 536 

different seasons and assessed by different culture-independent methods. Our results 537 

indicate that the fringing reefs of Moorea are a sink for DOC and bacterial inputs from 538 

the open ocean and that reefs alter the composition of the overlying bacterioplankton 539 

communities. The reef communities are enriched in several classes of bacteria uncommon 540 
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in open ocean waters, including clades containing various copiotrophs and potential 541 

pathogens. Furthermore, the consistent differentiation of communities among Backreef, 542 

Forereef, Bay, and Offshore habitats emphasizes the utility of bacterioplankton 543 

communities in illustrating unseen biogeochemical or ecological gradients among 544 

nearshore environments.  Our results support the concept of even rapidly-flushed reefs as 545 

sites of intense microbial activity, resulting in enhanced rates of DOM metabolism and 546 

shifts in bacterioplankton community structure relative to the surrounding ocean.  547 
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Figure Legends: 

 

Fig 1. A satellite photograph of Paopao Bay, Moorea with sampling locations identified 

according to time and type of sampling. Offshore sampling locations (4 sample stations in 

2009 and 1 time-series depth profiling station) are within ~6 km North of the reef crest 

and are excluded from this figure (see Fig. 4 inset map). 

 

Fig 2. DOC (a) and bacterioplankton (b) concentrations measured during a synoptic 

survey of surface waters in the vicinity of Paopao Bay, Moorea, 1 Sept 2009. The black 

line gives a rough outline of the bay and reef crest. Note that both DOC and 

bacterioplankton are depleted behind the reef crest. 

 

Fig 3. DOC and bacterioplankton concentrations averaged across 1, 5, and 10 m discrete 

depth samples 2-3 times annually at four sampling locations 2005-2009 in the vicinity of 

Paopao Bay, Moorea (see Fig. 1 for profile locations). Data are separated by season to 

test for significant differences when waves are highest during austral summer. Box plots 

represent mean, quartiles, and 90% ranges of data averaged at each location over time 

and depth. Letters denote significant differences among all averages across seasons for 

each parameter (means with no letters in common are significantly different at the 95% 

confidence level via Tukey post hoc tests). Note that Backreef is always depleted relative 

to Offshore and differentiation among habitats is more pronounced in Winter than 

Summer. Offshore DOC is always higher than all other nearshore habitats, and the only 

seasonal difference within a given habitat is higher bacterioplankton concentration in the 

Bay in Winter. 

 

Fig 4. Spatial distribution of bacterioplankton community types in the 2009 synoptic 

survey. Surface DNA samples are symbol/color coded according to 5 community types 

defined as 85% Bray-Curtis similarity group average (UPGMA) clusters of 16S bacterial 

rRNA gene amplicon TRFLP fingerprints (a; vertical line demarcs the 85% cluster 

threshold, triangles indicate samples without significant differences by SIMPROF 

bootstrapping). Samples are annotated in the dendrogram according to nominal sample 
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habitats for clarity. The map (b) is loosely shaded according to depth and substrate type 

keyed at the upper right, with samples symbol-coded according to TRFLP cluster. The 

inset map in (b) shows community types found at the offshore sampling locations, which 

were within ~6km of Moorea in >200m deep water. 

 

Fig 5. Spatial distribution of bacterial phylotypes in the vicinity of Paopao Bay 1 Sept 

2009. Each plot shows shaded contours of the relative abundance of terminal restriction 

fragments (TRFs) which were putatively identified with a cloned sequence from Moorea 

(Fig S5). Each phylotype distribution displayed here is unambiguously represented by a 

cloned sequence with a measured TRF falling within the 1bp range of environmental 

TRFs and for which the closest matching full-length clone in the greengenes database 

(DeSantis, et al. 2006b) has an identical in silico TRF and taxonomic classification, with 

the exception of SAR11 Group Ia which has an established consistent disparity between 

in silico TRF lengths (117bp) and clone TRF lengths (113bp) as shown by Morris, et al. 

(2005). Note that SAR11 clades are relatively enriched in the Backreef (a and d) while 

Cytophaga and SAR116 are relatively depleted (c, e, f). Synechococcus, SAR116, and 

SAR11 Group II are relatively depleted within the Bay and increase offshore (b, e, a) , 

while the two Flavobacteria are enriched in the Forereef (c) and Bay (f), respectively. 

 

Fig 6. Spatial variability in relative abundance of bacterial classes derived from 

pyrosequencing of environmental 16S rRNA V6 amplicons sampled in the vicinity of 

Moorea 11-13 Jan 2008. Replicate samples are labeled (top) according to collection 

location (see Table S1) and clustered (bottom) by relative abundance of sequences 

matching reference OTUs aggregated by Class (cluster lines are colored the same when 

there is no significant difference in communities; SIMPROF p > 0.05). Classes are 

clustered (left) according to relative variance across the spatial gradient, with green 

below average and red above average. Mean and ranges of relative abundance of each 

class across the dataset are given at right with color codes matching the heat map. 

Clustering and heatmaps were generated in the JMP v8 statistical package using group 

average clustering of samples according to class relative abundances between samples. 

 














