146 research outputs found

    Oxidation of benzoin catalyzed by oxovanadium (IV) schiff base complexes

    Get PDF
    BACKGROUND: The oxidative transformation of benzoin to benzil has been accomplished by the use of a wide variety of reagents or catalysts and different reaction procedures. The conventional oxidizing agents yielded mainly benzaldehyde or/and benzoic acid and only a trace amount of benzil. The limits of practical utilization of these reagents involves the use of stoichiometric amounts of corrosive acids or toxic metallic reagents, which in turn produce undesirable waste materials and required high reaction temperatures. In recent years, vanadium complexes have attracted much attention for their potential utility as catalysts for various types of reactions. RESULTS: Active and selective catalytic systems of new unsymmetrical oxovanadium(IV) Schiff base complexes for the oxidation of benzoin is reported. The Schiff base ligands are derived between 2-aminoethanol and 2-hydroxy-1- naphthaldehyde (H2L1) or 3-ethoxy salicylaldehyde (H2L3); and 2-aminophenol and 3-ethoxysalicylaldehyde (H2L2) or 2-hydroxy-1-naphthaldehyde (H2L4). The unsymmetrical Schiff bases behave as tridentate dibasic ONO donor ligands. Reaction of these Schiff base ligands with oxovanadyl sulphate afforded the mononuclear oxovanadium(IV) complexes (VIVOLx.H2O), which are characterized by various physico-chemical techniques. The catalytic oxidation activities of these complexes for benzoin were evaluated using H2O2 as an oxidant. The best reaction conditions are obtained by considering the effect of solvent, reaction time and temperature. Under the optimized reaction conditions, VOL4 catalyst showed high conversion (>99%) with excellent selectivity to benzil (~100%) in a shorter reaction time compared to the other catalysts considered. CONCLUSION: Four tridentate ONO type Schiff base ligands were synthesized. Complexation of these ligands with vanadyl(IV) sulphate leads to the formation of new oxovanadium(IV) complexes of type VIVOL.H2O. Elemental analyses and spectral data of the free ligands and their oxovanadium(IV) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. Oxovanadium complexes were screened for the oxidation of benzoin to benzil using H2O2 as oxidant. The effect of time, solvent and temperature were optimized to obtain maximum yield. The catalytic activity results demonstrate that these catalytic systems are both highly active and selective for the oxidation of benzoin under mild reaction conditions.Web of Scienc

    The Impact of Long-Term Exposure to Space Environment on Adult Mammalian Organisms: A Study on Mouse Thyroid and Testis

    Get PDF
    Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis

    Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish

    Get PDF
    ) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1.Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents

    Determining Signalling Nodes for Apoptosis by a Genetic High-Throughput Screen

    Get PDF
    With the ever-increasing information emerging from the various sequencing and gene annotation projects, there is an urgent need to elucidate the cellular functions of the newly discovered genes. The genetically regulated cell suicide of apoptosis is especially suitable for such endeavours as it is governed by a vast number of factors.We have set up a high-throughput screen in 96-well microtiter plates for genes that induce apoptosis upon their individual transfection into human cells. Upon screening approximately 100,000 cDNA clones we determined 74 genes that initiate this cellular suicide programme. A thorough bioinformatics analysis of these genes revealed that 91% are novel apoptosis regulators. Careful sequence analysis and functional annotation showed that the apoptosis factors exhibit a distinct functional distribution that distinguishes the cell death process from other signalling pathways. While only a minority of classic signal transducers were determined, a substantial number of the genes fall into the transporter- and enzyme-category. The apoptosis factors are distributed throughout all cellular organelles and many signalling circuits, but one distinct signalling pathway connects at least some of the isolated genes. Comparisons with microarray data suggest that several genes are dysregulated in specific types of cancers and degenerative diseases.Many unknown genes for cell death were revealed through our screen, supporting the enormous complexity of cell death regulation. Our results will serve as a repository for other researchers working with genomics data related to apoptosis or for those seeking to reveal novel signalling pathways for cell suicide

    Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices

    Full text link
    [EN] This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.Financial support from the Spanish Ministry of Science, Innovation and University, through the State Program for Talent and Employability Promotion 2013-2016 by means of Torres Quevedo research contract in the framework of Bio2 project (PTQ-14-07145) and from the Instituto Valenciano de Competitividad Empresarial-IVACE-GVA (BioSensCell project)Buaki-Sogo, M.; GarcĂ­a-Carmona, L.; Gil AgustĂ­, MT.; Zubizarreta Saenz De Zaitegui, L.; GarcĂ­a Pellicer, M.; Quijano-Lopez, A. (2020). Enzymatic Glucose Based Bio batteries: Bioenergy to Fuel Next Generation Devices. Topics in Current Chemistry (Online). 378(6):1-28. https://doi.org/10.1007/s41061-020-00312-8S1283786Schlögl R (2015) The revolution continues: Energiewende 2.0. Angew Chem Int Ed 54:4436–4439Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51:11700-11721Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, LĂ©ger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 165:739Boudghere Stambouli A, Traversa E (2002) Solid oxide fuel cells (SOFC): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455Qiao Y, Li CM (2011) Nanostructured catalyst in fuel cells. J Mater Chem 21:4027–4036Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards sustainable energy future. Energy Policy 36:4356–4362Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy 13:2430–2440Kerzenmacher S, Ducree J, Zengerle R, von Stetten F (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J Power Sources 182:66–75Drake RF, Kusserow BK, Messinger S, Matsuda S (1970) A tissue implantable fuel cell power supply. Trans Am Soc Artif Intern Organs 16:199–205Giner J, Holleck G, Malachesky PA (1973) Eine implantierbare Brennstoffzelle zum Betrieb eines mechanischen Herzens. Phys Chem 77:782–783. https://doi.org/10.1002/bbpc.19730771009Cosnier S, LeGoff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem Commun 38:19–23Katz E (2015) Implantable biofuel cells operating in vivo—potential power sources for bioelectronic devices. Bioelectron Med 2:1–12Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006a) Biofuel cells and their development . Biosens Bioelectron 21:2015–2045Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006b) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045Koch C, Popiel D, Harnisch F (2014) Functional redundancy of microbial anodes fed by domestic wastewater. ChemElectroChem 1:1923–1931Mano N, Mao F, Heller A (2003) Characteristics of a miniature compartment-less glucose−O2 biofuel cell and its operation in a living plant. J Am Chem Soc 125(21):6588–6594Mano N, Mao F, Heller A (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc 124(44):12962–12963Bruen D, Delaney C, Florea L, Diamond D (2017) Glucose sensing for diabetes monitoring: recent developments. Sensors 17:1866Falk M, Blum Z, Shleev S (2012) Direct electron transfer based enzymatic fuel cells. Electrochim Acta 82:191–202White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104Broderick JB (2001) Coenzymes and cofactors. In: eLS. Wiley, Chichester. https://www.els.net. https://doi.org/10.1038/npg.els.0000631Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotech Adv 27:489–501Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5:1068–1076Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environ Sci 6:2791–2803Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme catalysed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9:661–674Von Woedtke Th, Fisher U, Abel P (1994) Glucose oxidase electrodes: effect of H2O2 on enzyme activity? Biosens Bioelectron 9:65–71Kleppe K (1966) The effect of H2O2 on glucose oxidase from Aspergillus niger. Biochemistry 5:139–143Zebda A, Godran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, Sabbatini L, Fine D, Dodabalapur A, Lioffi N, Torsi L (2011) Carbon based nanomaterials for electronic bio-sensing. Mat Today 14:424–433Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897Wang Z, Dai Z (2015) Carbon nanomaterials-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing. Chem Soc Rev 42:2824–2860Babadi AA, Bagheri S, Abdul Hamid SB (2016) Progress on implantable biofuel cell: nano-carbon functionalization for enzyme immobilization enhancement. Biosens Bioelectron 15:850–860Osadebe I, Leech D (2014) Effect of multi-walled carbon nanotubes on glucose oxidation by glucose oxidase or a flavin-dependent glucose dehydrogenase in redox-polymer-mediated enzymatic fuel cell anodes. ChemElectroChem 1:1988–1993Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13(4):4811–4840Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878–4908Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9Ivanov I, Vidaković-Koch T, Sundmaker K (2010) Recent advances in enzymatic fuel cells; experiments and modelling. Energies 3:803–846Nguyen HH, Kim M (2017) An overview of techniques in enzyme immobilization. Appl Sci Converg Technol 26(6):157–163Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):e18692Lee DH, Park CH, Yeo JM, Kim SW (2006) Lipase immobilization on silica gel using a cross-linking method. J Ind Eng Chem 12(5):777–782SzymaƄska K, Bryjak J, Jarzębski AB (2009) Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Top Catal 52:1030–1036Al-Lolage F, Meneghello M, Ma S, Ludwig R, Barlett PN (2017) A flexible method for the stable, covalent immobilization of enzymes at electrode surfaces. ChemElectroChem 4:1528–1534Gutierrez-Sanchez C, Shleev S, De Lacey AL, Pita M (2015) Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode. Chem Pap 69:237–240Pita M, Gutierrez-Sanchez C, Toscano MD, Shleev S, De Lacey AL (2013) Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 94:69–74Vaz-Dominguez C, Campuzano S, RĂŒdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, de Lacey LA (2008) Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens Bioelectron 24(4):531–537GutiĂ©rrez-SĂĄnchez C, Jia W, Beyl Y, Pita M, Schuhmann W, de Lacey LA, Stoica L (2012) Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods. Electrochim Acta 82:218–223Lv Y, Jin S, Wang Y, Lun Z, Xia C (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13(10):1767–1776Zhao C, Gai P, Song R, Chen Y, Zhang J, Zhu J-J (2017) Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 46:1545–1564Yu EH, Scott K (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23–42Minteer SD, Atanassov P, Luckarift HR, Johnson GR (2013) New materials for biological fuel cells. Mater Today 15(4):166–173Sarma AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20:801–821Sardar M, Gupta MN (2005) Immobilization of tomato pectinase on Con A-Seralose 4B by bioaffinity layering. Enzyme Microbial Technol 37:355–359Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477Velasco-Lozano S, LĂłpez-Gallego F, Mateos-DĂ­az JC, Favela-Torres E (2015) Cross-linked enzyme aggregates (CLEA) in enzyme improvement—a review. Biocatalysis 1:166–177Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosen Bioelectron 14:443–456Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 29:128–134Heller A (1992) Electrical connection of enzyme redox centres to electrodes. J Phys Chem 96:3579–3587Martins MVA, Pereira AR, Luz RAS, Iost RM, Crespilho FN (2014) Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys Chem Chem Phys 16:17426–17436Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN (2014) Enzyme biofuel cells: thermodynamics. Kinetics and challenges in applicability. ChemElectroChem 1(11):1751–1777Neto SA, De Andrade AR (2013) New energy sources: the enzymatic biofuel cell. J Braz Chem Soc 24(12):1891–1912Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) A glucose fuel cell for implantable brain–machine interfaces. PLoS One 7(6):6 e38436Zebda A, Alcaraz J-P, Vadgama P, Shleev S, Minteer SD, Boucher F, Cinquin P, Martin DK (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72Ferraris RP, Diamond J (1997) Regulation of intestinal sugar transport. Physiol Rev 77:257–301Sprague JE, ArbelĂĄez AM (2011) Glucose counterregulatory responses to hypoglicemia. Pediatr Endocrinol Rev 9:463–475Slaughter G, Kulkarni T (2019) Detection of human plasma glucose using a self-powered glucose biosensor. Energies 12:825Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54Koushanpour A, Gamella M, Katz E (2017) A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes—extracting electrical power from human sweat. Electroanalysis 29:1602–1611Yao Y, Li H, Wang D, Liu C, Zhang C (2017) An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 142:3715–3724Pankratov D, GonzĂĄlez-Arribas E, Blum Z, Shleev S (2016) Tear based bioelectronics. Electroanalysis 28:1250–1266Krogstad AL, Jansson PA, Gisslen P, Lönnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134(6):1005–1012Bandodkar AJ, Wang J (2016) Wearable biofuel cells: a review. Electroanalysis 28:1188–1200Jia W, ValdĂ©s-RamĂ­rez G, Bandodkar AJ, Windmiller JR, Wang J (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:1–5Jeerapan I, Sempionatto JR, Pavinatto A, You J-M, Wang J (2016) Stretchable biofuel cells as wearable textile-based self-powered sensors. J Mater Chem A 4:18342–18353ValdĂ©s-RamĂ­rez G, Li Y-G, Kima J, Jia W, Bandodkar AJ, Nuñez-Flores R, Miller PR, Wu S-Y, Narayan R, Windmiller JR, Polsky R, Wang J (2016) Microneedle-based self-powered glucose sensor. Electrochem Commun 47:58–62Gamella M, Koushanpour A, Katz E (2018) Biofuel cells—activation of micro- and macro- electronic devices. Bioelectrochemistry 119:33–42Mano N, Mao F, Shin W, Chen T, Heller A (2003) A miniature biofuel cell operating at 0.78 V. Chem Commun 20:518–519Shi B, Li Z, Fan Y (2018) Implantable energy harvesting devices. Adv Mater 30:1801511MacVittie K, HalĂĄmek J, HalĂĄmkovĂĄ L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86Szczupak A, HalĂĄmek J, HalĂĄmkovĂĄ L, Bocharova V, Alfonta L, Katz E (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891–8895Southcott M, MacVittie K, HalĂĄmek J, HalĂĄmkovĂĄ L, Jemison WD, Lobel R, Katz E (2013) A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system—battery not included. Phys Chem Chem Phys 15:6278–6283MacVittie K, Conlon T, Katz E (2015) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 106:28–33Aghahosseini H, Ramazani A, Asiabi PA, Gouranlou F, Hosseini F, Rezaei A, Min B-K, Joo SW (2016) Glucose-based biofuel cells: nanotechnology as a vital science in biofuel cell performance. Nanochem Res 1(2):83–204Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 2013:1516Ichi-Ribault SE, Alcaraz J-P, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, Martin DK (2018) Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta 269:360–366Bandodkar A (2017) Review—wearable biofuel cells: past, present and future. J Electrochem Soc 164(3):H3007–H3014Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, Ruzgas T, Shleev S (2010) A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells 10(1):9–16Shoji K, Akiyama Y, Suzuki M, Nakamura N, Ohno H, Morishima K (2016) Biofuel cell backpacked insect and its application to wireless sensing. Biosens Bioelectron 78:390–395Reuillard B, Abreu C, Lalaoui N, Le Goff A, Holzinger M, Ondel O, Buret F, Cosnier S (2015) One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 106:73–76Sales FCPF, Iost RM, Martins MVA, Almeida MC, Crespilho FN (2013) An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip 13:468Falk M, Narvez Villarrubia CW, Babanova S, Atanassov P, Shleev S (2013) Biofuel cells for biomedical applications: colonizing the animal kingdom. ChemPhysChem 14:2045–2058Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D (2012) An implantable biofuel cell for a live insect. J Am Chem Soc 134(3):1458–1460HalĂĄmkovĂĄ L, HalĂĄmek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellisier A, Boucher F, Alcaraz J-P, Gorgy K, Lenouvel F, MathĂ© S, Porcu P, Cosnier S (2010) A glucose biofuel cell implanted in rats. Plos One 5(5):e010476Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan S, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491Andoralov V, Falk M, Suyatin DB, Granmo M, Sotres J, Ludwig R, Popov VO, Schouenborg J, Blum Z, Shleev S (2013) Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neuronsVerbeek MM, Leen WG, Willemsen MA, Slats D, Claassen JA (2016) Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations. J Cereb Blood F Met 36(5):899–902GonzĂĄlez-Guerrero MJ, Del Campo FJ, Esquivel JP, Leech D, SabatĂ© N (2017) Paper-based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosens Bioelectron 90:475–480Takeuchi ES, Leising RA (2002) Lithium batteries for biomedical applications. MRS Bull 27(8):624–627Bock DC, Marschilok A, Takeuchi KJ, Takeuchi ES (2012) Batteries used to power implantable biomedical devices. Electrochim Acta 84:155–164Greatbatch W, Lee JH, Mathias W, Eldridge M, Moser JR, Schneider AA (1971) The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemaker. IEEE Trans Biomed Eng 18(5):317–324Liu Y, Dong S (2007) A biofuel cell with enhanced power output by grape juice. Electrochem Commun 9(7):1423–1427Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218Zhou L, Mao J, Ren Y, Han ST, Roy VAL, Zhou Y (2018) Recent advances of flexible data storage devices based on organic nanoscale materials. Small 14(10):1703126Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kong K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4:1277–1283Pang C, Lee C, Suh K-Y (2013) Recent advances in flexible sensors for wearable and implantable devices. J Appl Pol Sci 130:1429–1441Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotech 32(7):363–371Bandodkar AJ, Uia W, Wang J (2015) Tatto-based wearable electrochemical devices: a review. Electroanalysis 27(3):562–572Reid RC, Minteer SD, Gale BK (2015) Contact lens biofuel cell tested in a synthetic tear solution. Biosens Bioelectron 68:142Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DM, Ruzgas T, Arnebrant T, Shleev S (2012) Biofuel cells as a power source for electronic contact lenses. Biosens Bioelectron 37(1):38–45Falk M, Andoralov V, Silow M, Toscano MD, Shleev S (2013) Miniature biofuel cell as a potential power source for Glucose-sensing contact lenses. Anal Chem 85(13):6342–6348Reid R, Jones SR, Hickey DP, Minteer SD, Gale BK (2016) Modeling carbon nanotubes connectivity and surface activity in a contact lens biofuel cell. Electrochim Acta 203:30–40Blum Z, Pankratov D, Shleev S (2014) Powering electronic contact lenses: current achievements, challenges and perspective. Expert Rev Ophthalmol 9(4):269–273Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E (2018) Nanoporous gold-based biofuel cell on contact lenses. ACS Appl Mater Interfaces 10(8):7107–7116Yang X-Y, Tian G, Jiang N, Su B-L (2012) Immobilization technology: a sustainable solution for biofuel cell design. Ener Environ Sci 5:5540–5563Mano N (2019) Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 128:218–240Mate DM, Gonzalez-Perez D, Falk M, Kittl R, Pita M, De Lacey LA, Ludwig R, Shleev S, Alcalde M (2013) Blood tolerant caccase by directed evolution. Chem Biol 20:223–231Zhang L, Carucci C, Reculusa S, Goudeau B, Lefrançois P, Gounel S, Mano N, Kuhn A (2019) Rational design of enzyme-modified electrodes for optimized bioelectrocatalytic activity. ChemElectroChem 6(19):4980–4984Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56:1585Yang Y, Wang ZL (2015) Hybrid energy cells for simultaneously harvesting multi-types of energies. NanoEnergy 14:245–256Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647Song K, Han JH,

    Magnetic resonance imaging (MRI) in rectal cancer: a comprehensive review

    Get PDF
    Magnetic resonance imaging (MRI) has established itself as the primary method for local staging in patients with rectal cancer. This is due to several factors, most importantly because of the ability to assess the status of circumferential resection margin. There are several newer developments being introduced continuously, such as diffusion-weighted imaging and imaging with 3 T. Assessment of loco-regional lymph nodes has also been investigated extensively using different approaches, but more work needs to be done. Finally, evaluation of tumours during or after preoperative treatment is becoming an everyday reality. All these new aspects prompt a review of the most recent advances and opinions. In this review, a comprehensive overview of the current status of MRI in the loco-regional assessment and management of rectal cancer is presented. The findings on MRI and their accuracy are reviewed based on the most up-to-date evidence. Optimisation of MRI acquisition and relevant regional anatomy are also presented, based on published literature and our own experience

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF
    • 

    corecore