184 research outputs found
M‐type K⁺ channels in peripheral nociceptive pathways
Pathological pain is a hyperexcitability disorder. Since the excitability of a neuron is set and controlled by a complement of ion channels it expresses, in order to understand and treat pain, we need to develop a mechanistic insight into the key ion channels controlling excitability within the mammalian pain pathways and how these ion channels are regulated and modulated in various physiological and pathophysiological settings. In this review, we will discuss the emerging data on the expression in pain pathways, functional role and modulation of a family of voltage‐gated K⁺ channels called ‘M channels’ (KCNQ, Kv7). M channels are increasingly recognized as important players in controlling pain signalling, especially within the peripheral somatosensory system. We will also discuss the therapeutic potential of M channels as analgesic drug targets
A Review of the Evidence Germane to the Putative Protective Role of the Macular Carotenoids for Age-Related Macular Degeneration
There is a consensus that age-related macular degeneration (AMD) is the result of (photo)- oxidative-induced retinal injury and its inflammatory sequelae, the latter being influenced by genetic background. The dietary carotenoids, lutein (L), zeaxanthin (Z), and meso-zeaxanthin (meso-Z), accumulate at the macula, where they are collectively known as macular pigment (MP). The anatomic (central retinal), biochemical (anti-oxidant) and optical (short-wavelength- filtering) properties of this pigment have generated interest in the biologically plausible rationale that MP may confer protection against AMD. Level 1 evidence has shown that dietary supplementation with broad-spectrum anti-oxidants results in risk reduction for AMD progression. Studies have demonstrated that MP rises in response to supplementation with the macular carotenoids, although level 1 evidence that such supplementation results in risk reduction of AMD and/or its progression is still lacking. Although appropriately weighted attention should be accorded to higher levels of evidence, the totality of available data should be appraised in an attempt to inform professional practice. In this context, the literature demonstrates that supplementation with the macular carotenoids is probably the best means of fortifying the anti-oxidant defenses of the macula, thus putatively reducing the risk of AMD and/or its progression
Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review
The inflammation process in the human body plays a central role in the pathogenesis of many chronic diseases. In addition, reactive oxygen species (ROS) exert potentially a decisive role in human body, particularly in physiological and pathological process. The chronic inflammation state could generate several types of diseases such as cancer, atherosclerosis, diabetes mellitus and arthritis, especially if it is concomitant with high levels of pro-inflammatory markers and ROS. The respiratory burst of inflammatory cells during inflammation increases the production and accumulation of ROS. However, ROS regulate various types of kinases and transcription factors such nuclear factor-kappa B which is related to the activation of pro-inflammatory genes. The exact crosstalk between pro-inflammatory markers and ROS in terms of pathogenesis and development of serious diseases is still ambitious. Many studies have been attempting to determine the mechanistic mutual relationship between ROS and pro-inflammatory markers. Therefore hereby, we review the hypothetical relationship between ROS and pro-inflammatory markers in which they have been proposed to initiate cancer, atherosclerosis, diabetes mellitus and arthritis
- …