1,152 research outputs found

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    Second phalanx shortening osteotomy. An innovative technique for long second toe syndrome

    Get PDF
    AbstractLong second-toe syndrome, although frequent and disabling, has been little described. Current surgical techniques often lead to loss of function. Based on anatomical and biomechanical observations, the present study reports a second phalanx shortening osteotomy technique. The procedure is relatively non-invasive, involving self-stabilizing segment resection osteotomy of the second phalanx. Results for the first 23 feet undergoing the procedure were analyzed retrospectively. Assessment comprised clinical examination, radiography and AOFAS and FAAM scores. Mean follow-up was 19±9.9months. Second phalanx shortening osteotomy proved reliable, respecting the biomechanics of the toe

    Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy.

    Get PDF
    AIM: To determine whether diffusion tensor imaging (DTI) can be an independent assessment for identifying the corticospinal tract (CST) projecting from the more-affected motor cortex in children with unilateral spastic cerebral palsy (CP). METHOD: Twenty children with unilateral spastic CP participated in this study (16 males, four females; mean age 9y 2mo [standard deviation (SD) 3y 2mo], Manual Ability Classification System [MACS] level I-III). We used DTI tractography to reconstruct the CST projecting from the more-affected motor cortex. We mapped the motor representation of the more-affected hand by stimulating the more- and the less-affected motor cortex measured with single-pulse transcranial magnetic stimulation (TMS). We then verified the presence or absence of the contralateral CST by comparing the TMS map and DTI tractography. Fisher's exact test was used to determine the association between findings of TMS and DTI. RESULTS: DTI tractography successfully identified the CST controlling the more-affected hand (sensitivity=82%, specificity=78%). INTERPRETATION: Contralateral CST projecting from the lesioned motor cortex assessed by DTI is consistent with findings of TMS mapping. Since CST connectivity may be predictive of response to certain upper extremity treatments, DTI-identified CST connectivity may potentially be valuable for determining such connectivity where TMS is unavailable or inadvisable for children with seizures.K08 NS073796 - NINDS NIH HHS; TL1 RR024158 - NCRR NIH HHS; K01 NS062116 - NINDS NIH HHS; UL1 RR024156 - NCRR NIH HHS; KL2 RR024157 - NCRR NIH HHS; R01 HD076436 - NICHD NIH HHSPublished versio

    Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential

    Get PDF
    Magneto-optical microscopy and magnetometry have been used to study 19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film 20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly 21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially 22 periodic pinning potential for domain walls propagating through the continuous 23 magnetic film. When reversing the applied field with respect to the static nanodot 24 array magnetization orientation, strong asymmetries in the wall velocity and switching 25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is 26 characterized by a large bias field of dipolar origin which is linked to the wall velocity 27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields 28 where the domains become round and compact. A field-polarity-controlled transition 29 from dendritic to compact faceted domain structures is also seen at low field and a 30 model is proposed to interpret the transition

    Relationship Between The Excited State Relaxation Paths Of Rhodopsin And Isorhodopsin

    Get PDF
    The pigment Isorhodopsin, an analogue of the visual pigment Rhodopsin, is investigated via quantum-mechanics/molecular-mechanics computations based on an ab initio multiconfigurational quantum chemical, treatment. The limited \u3c5 kcal mol(-1) error found for the spectral parameters allows for a nearly quantitative analysis of the excited-state structure and reactivity of its 9-cis-retinal chromophore. We demonstrate that, similar to Rhodopsin, Isorhodopsin features a shallow photoisomerization path. However, the structure of the reaction coordinate appears to be reversed. In fact, while the coordinate still corresponds to an asynchronous crankshaft motion, the dominant isomerization component involves a counterclockwise, rather than clockwise, twisting of the 9-cis bond. Similarly, the minor component involves a clockwise, rather than counterclockwise, twisting of the 11-trans bond. Ultimately, these results indicate that Rhodopsin and Isorhodopsin relax along a common excited-state potential energy valley starting from opposite ends. The fact that the central and lowest energy region of such valley runs along a segment of the intersection space between the ground and excited states of the protein explains why the pigments decay at distinctive conical intersection structures

    Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST r1234)

    Get PDF
    We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean-Atmosphere-Wave- Sediment Transport Modeling System (COAWST Subversion repository revision 1234). These include the following: floc dynamics (aggregation and disaggregation in the water column); changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive) sediment; and biodiffusive mixing of bed sediment. These routines supplement existing noncohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application

    NGC 474 as viewed with KCWI: Diagnosing a shell galaxy

    Get PDF
    We present new spectra obtained using Keck/KCWI and perform kinematics and stellar population analyses of the shell galaxy NGC 474, from both the galaxy centre and a region from the outer shell. We show that both regions have similarly extended star formation histories although with different stellar population properties. The central region of NGC 474 is dominated by intermediate-Aged stars (8.3 ± 0.3 Gyr) with subsolar metallicity ([Z/H] =-0.24 ± 0.07 dex) while the observed shell region, which hosts a substantial population of younger stars, has a mean luminosity-weighted age of 4.0 ± 0.5 Gyr with solar metallicities ([Z/H] =-0.03 ± 0.09 dex). Our results are consistent with a scenario in which NGC 474 experienced a major to intermediate merger with a log(M∗/M⊙)∼10(M_∗/\rm M_\odot) \sim 10 mass satellite galaxy at least ∼2{\sim}2 Gyr ago which produced its shell system. This work shows that the direct spectroscopic study of low-surface brightness stellar features, such as shells, is now feasible and opens up a new window to understanding galaxy formation and evolution

    Physical activity and sedentary behavior from 6 to 11 years

    Get PDF
    OBJECTIVES: Physical activity (PA) is presumed to decline during childhood and adolescence, but only few long-term studies about PA development during this period of life exist. We assessed PA and sedentary behavior (SB) over a 5-year period to gain a better understanding of the extent of change in activity and potential influencing factors. METHODS: PA and SB of 600 children from the Childhood Obesity Project were objectively measured with the SenseWear Armband 2 at the ages of 6, 8, and 11 years, resulting in 1254 observations. Longitudinal changes of total PA, moderate-to-vigorous physical activity (MVPA), light physical activity (LPA), and SB were modeled with mixed-effects models. RESULTS: Total PA revealed a significant quadratic decline with age (P < .001), resulting in a change of total PA by -75.3 minutes per day from 6 to 11 years. LPA linearly declined (P < .001) by 44.6 minutes per day, MVPA quadratically declined (P < .001) by an overall 30.7 minutes, whereas SB increased significantly (+107 minutes; P = .001). Boys showed a steeper decline in LPA (P = .003) and MVPA (P < .001) than did girls. Higher fat mass index and BMI z scores were associated with lower levels of total PA and MVPA and higher levels of SB (all P < .001). CONCLUSIONS: We showed that PA decreased, and SB increased in earlier years than previously thought. MVPA remained relatively stable until 8 years, but revealed a drop-off at 11 years, identifying this period as a crucial time for intervention
    • …
    corecore