261 research outputs found
Visual Spike-based Convolution Processing with a Cellular Automata Architecture
this paper presents a first approach for
implementations which fuse the Address-Event-Representation
(AER) processing with the Cellular Automata using FPGA and
AER-tools. This new strategy applies spike-based convolution
filters inspired by Cellular Automata for AER vision
processing. Spike-based systems are neuro-inspired circuits
implementations traditionally used for sensory systems or
sensor signal processing. AER is a neuromorphic
communication protocol for transferring asynchronous events
between VLSI spike-based chips. These neuro-inspired
implementations allow developing complex, multilayer,
multichip neuromorphic systems and have been used to design
sensor chips, such as retinas and cochlea, processing chips, e.g.
filters, and learning chips. Furthermore, Cellular Automata is a
bio-inspired processing model for problem solving. This
approach divides the processing synchronous cells which
change their states at the same time in order to get the solution.Ministerio de Educación y Ciencia TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141
EL CONTENIDO CURRICULAR COMO ESTRATEGIA DE CONTENCION DE ALUMNOS DE 1º AÑO DE LA CARRERA DE ARQUITECTURA. FAUD.UNC.
El ingreso a la Universidad implica una inflexión en la vida y en la formación del estudiante. Es una etapa crítica del proceso de crecimiento y maduración, que debería generar un mayor grado de autonomía y autogestión. Los alumnos ingresantes en Arquitectura, presentan un grado importante de dispersión en cuanto a los contenidos curriculares aprendidos en el nivel medio y una gran disparidad de habilidades y hábitos de trabajo adquiridos en las etapas formativas previas. El curso de nivelación intenta paliar algunos de estas debilidades, pero es necesario que las asignaturas de primer año asuman en forma conjunta el objetivo nivelador para evitar la frustración de un grupo importante de estudiantes que fracasa en esta etapa. En los últimos años se detecta, además, una importante deserción de estudiantes al promediar el primer año. La propuesta pedagógica debe proveer alternativas para afrontar el escenario de un ingreso masivo, con condiciones infraestructurales deficitarias y una relación docente - alumno que dista mucho de ser óptima. Las asignaturas de los ciclos básicos universitarios son mediadoras en el proceso de aprendizaje que produce el paso de la escuela media a los estudios superiores y por lo tanto desempeñan un papel fundamental. Deben aportar instrumentos formativos acerca de los roles profesionales, de las posibilidades y alcances de la formación disciplinar y del contexto social y cultural de inserción. Nuestra Cátedra propone la implementación de un conjunto de estrategias de abordaje que permitan superar algunas de las disfunciones detectadas, potenciar las fortalezas y aprovechar las oportunidades, a través de una visión histórico-crítica de los ambientes humanos que, creemos, puede posibilitar la comprensión de los procesos de desarrollo profesional, y no solamente proveer información acerca de obras, autores o escenario
A Report on New Antennas for Satellite Communications on-the-move in Ka-band
This project was initiated in 2017 within the framework of the Spanish national research program, funded by the ministry of economics, industry and competitiveness. The scope of this project is focused on the design of ground terminals for the new generation of high-throughput satellites operating in the Ka band (from 19 to 31 GHz
Comments on “Ka-Band Coplanar Magic-T Based on Gap Waveguide Technology”
In the title paper, the author proposes a Ka-Band Coplanar Magic-T Based on Gap-Waveguide (GW) Technology. The major novelty claimed in the paper is the combination of ridge-gap and E-plane groove-gap waveguides for Ka-band applications. However, such combination of these two types of waveguides in GW technology was firstly proposed in 2017. This combination allows for the realization of numerous devices, and distribution networks in the millimeter-wave band. This comment aims to properly frame the evolution of the use of RGW-GGW networks and how their use can be useful for new mm-wave band devices. While the author’s Magic-T introduces a new feature by using a 4-port network, it is clear that the concept relies on previous ideas not mentioned in the manuscript and this can lead to confusion about its actual novel contributions. In addition, we intend to give the microwave community a proper perspective of the above work’s frame of reference
Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level
[EN] Plant polyamines (PAs) have been assigned a large number of physiological functions with unknown molecular mechanisms in many cases. Among the most abundant and studied polyamines, two of them, namely spermidine (Spd) and thermospermine (Tspm), share some molecular functions related to quality control pathways for tightly regulated mRNAs at the level of translation. In this review, we focus on the roles of Tspm and Spd to facilitate the translation of mRNAs containing upstream ORFs (uORFs), premature stop codons, and ribosome stalling sequences that may block translation, thus preventing their degradation by quality control mechanisms such as the nonsense-mediated decay pathway and possible interactions with other mRNA quality surveillance pathways.A.F. was funded by the Spanish Ministry of Science, Innovation and Universities, grant number BIO2015-70483-R, and B.B.-P. was funded by the Generalitat Valenciana grant, VALi+d GVA APOSTD/2017/039. D.U. was a recipient of an EMBO short-term fellowship, number STF-7308.Poidevin, L.; Unal, D.; Belda-Palazón, B.; Ferrando Monleón, AR. (2019). Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. Plants. 8(4):1-13. https://doi.org/10.3390/plants8040109S11384Graille, M., & Séraphin, B. (2012). Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nature Reviews Molecular Cell Biology, 13(11), 727-735. doi:10.1038/nrm3457Preissler, S., & Deuerling, E. (2012). Ribosome-associated chaperones as key players in proteostasis. Trends in Biochemical Sciences, 37(7), 274-283. doi:10.1016/j.tibs.2012.03.002Fuell, C., Elliott, K. A., Hanfrey, C. C., Franceschetti, M., & Michael, A. J. (2010). Polyamine biosynthetic diversity in plants and algae. Plant Physiology and Biochemistry, 48(7), 513-520. doi:10.1016/j.plaphy.2010.02.008Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011IGARASHI, K., SUGAWARA, K., IZUMI, I., NAGAYAMA, C., & HIROSE, S. (1974). Effect of Polyamines on Polyphenylalanine Synthesis by Escherichia coli and Rat-Liver Ribosomes. European Journal of Biochemistry, 48(2), 495-502. doi:10.1111/j.1432-1033.1974.tb03790.xIGARASHI, K., HASHIMOTO, S., MIYAKE, A., KASHIWAGI, K., & HIROSE, S. (2005). Increase of Fidelity of Polypeptide Synthesis by Spermidine in Eukaryotic Cell-Free Systems. European Journal of Biochemistry, 128(2-3), 597-604. doi:10.1111/j.1432-1033.1982.tb07006.xEchandi, G., & Algranati, I. D. (1975). Defective 30S ribosomal particles in a polyamine auxotroph of Escherichia coli. Biochemical and Biophysical Research Communications, 67(3), 1185-1191. doi:10.1016/0006-291x(75)90798-6Igarashi, K., Kishida, K., & Hirose, S. (1980). Stimulation by polyamines of enzymatic methylation of two adjacent adenines near the 3′ end of 16S ribosomal RNA of Escherichia coli. Biochemical and Biophysical Research Communications, 96(2), 678-684. doi:10.1016/0006-291x(80)91408-4Hetrick, B., Khade, P. K., Lee, K., Stephen, J., Thomas, A., & Joseph, S. (2010). Polyamines Accelerate Codon Recognition by Transfer RNAs on the Ribosome. Biochemistry, 49(33), 7179-7189. doi:10.1021/bi1009776Amarantos, I. (2000). Photoaffinity polyamines: interactions with AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli ribosomes. Nucleic Acids Research, 28(19), 3733-3742. doi:10.1093/nar/28.19.3733Amarantos, I. (2002). The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions. Nucleic Acids Research, 30(13), 2832-2843. doi:10.1093/nar/gkf404Xaplanteri, M. A. (2005). Localization of spermine binding sites in 23S rRNA by photoaffinity labeling: parsing the spermine contribution to ribosomal 50S subunit functions. Nucleic Acids Research, 33(9), 2792-2805. doi:10.1093/nar/gki557Dever, T. E., & Ivanov, I. P. (2018). Roles of polyamines in translation. Journal of Biological Chemistry, 293(48), 18719-18729. doi:10.1074/jbc.tm118.003338Ivanov, I. P. (2000). Conservation of polyamine regulation by translational frameshifting from yeast to mammals. The EMBO Journal, 19(8), 1907-1917. doi:10.1093/emboj/19.8.1907Brandman, O., & Hegde, R. S. (2016). Ribosome-associated protein quality control. Nature Structural & Molecular Biology, 23(1), 7-15. doi:10.1038/nsmb.3147Behm-Ansmant, I., Kashima, I., Rehwinkel, J., Saulière, J., Wittkopp, N., & Izaurralde, E. (2007). mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Letters, 581(15), 2845-2853. doi:10.1016/j.febslet.2007.05.027Chang, Y.-F., Imam, J. S., & Wilkinson, M. F. (2007). The Nonsense-Mediated Decay RNA Surveillance Pathway. Annual Review of Biochemistry, 76(1), 51-74. doi:10.1146/annurev.biochem.76.050106.093909Brogna, S., & Wen, J. (2009). Nonsense-mediated mRNA decay (NMD) mechanisms. Nature Structural & Molecular Biology, 16(2), 107-113. doi:10.1038/nsmb.1550Amrani, N., Sachs, M. S., & Jacobson, A. (2006). Early nonsense: mRNA decay solves a translational problem. Nature Reviews Molecular Cell Biology, 7(6), 415-425. doi:10.1038/nrm1942Rebbapragada, I., & Lykke-Andersen, J. (2009). Execution of nonsense-mediated mRNA decay: what defines a substrate? Current Opinion in Cell Biology, 21(3), 394-402. doi:10.1016/j.ceb.2009.02.007Peccarelli, M., & Kebaara, B. W. (2014). Regulation of Natural mRNAs by the Nonsense-Mediated mRNA Decay Pathway. Eukaryotic Cell, 13(9), 1126-1135. doi:10.1128/ec.00090-14Kurihara, Y., Matsui, A., Hanada, K., Kawashima, M., Ishida, J., Morosawa, T., … Seki, M. (2009). Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proceedings of the National Academy of Sciences, 106(7), 2453-2458. doi:10.1073/pnas.0808902106Drechsel, G., Kahles, A., Kesarwani, A. K., Stauffer, E., Behr, J., Drewe, P., … Wachter, A. (2013). Nonsense-Mediated Decay of Alternative Precursor mRNA Splicing Variants Is a Major Determinant of the Arabidopsis Steady State Transcriptome. The Plant Cell, 25(10), 3726-3742. doi:10.1105/tpc.113.115485Kalyna, M., Simpson, C. G., Syed, N. H., Lewandowska, D., Marquez, Y., Kusenda, B., … Brown, J. W. S. (2011). Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Research, 40(6), 2454-2469. doi:10.1093/nar/gkr932Leeds, P., Wood, J. M., Lee, B. S., & Culbertson, M. R. (1992). Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Molecular and Cellular Biology, 12(5), 2165-2177. doi:10.1128/mcb.12.5.2165Kerényi, Z., Mérai, Z., Hiripi, L., Benkovics, A., Gyula, P., Lacomme, C., … Silhavy, D. (2008). Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay. The EMBO Journal, 27(11), 1585-1595. doi:10.1038/emboj.2008.88Shaul, O. (2015). Unique Aspects of Plant Nonsense-Mediated mRNA Decay. Trends in Plant Science, 20(11), 767-779. doi:10.1016/j.tplants.2015.08.011Rayson, S., Arciga-Reyes, L., Wootton, L., De Torres Zabala, M., Truman, W., Graham, N., … Davies, B. (2012). A Role for Nonsense-Mediated mRNA Decay in Plants: Pathogen Responses Are Induced in Arabidopsis thaliana NMD Mutants. PLoS ONE, 7(2), e31917. doi:10.1371/journal.pone.0031917Shi, C., Baldwin, I. T., & Wu, J. (2012). Arabidopsis Plants Having Defects in Nonsense-mediated mRNA Decay Factors UPF1, UPF2, and UPF3 Show Photoperiod-dependent Phenotypes in Development and Stress Responses. Journal of Integrative Plant Biology, 54(2), 99-114. doi:10.1111/j.1744-7909.2012.01093.xNasim, Z., Fahim, M., & Ahn, J. H. (2017). Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00191Degtiar, E., Fridman, A., Gottlieb, D., Vexler, K., Berezin, I., Farhi, R., … Shaul, O. (2015). The feedback control of UPF3 is crucial for RNA surveillance in plants. Nucleic Acids Research, 43(8), 4219-4235. doi:10.1093/nar/gkv237Popp, M. W.-L., & Maquat, L. E. (2013). Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay. Annual Review of Genetics, 47(1), 139-165. doi:10.1146/annurev-genet-111212-133424Dai, Y., Li, W., & An, L. (2015). NMD mechanism and the functions of Upf proteins in plant. Plant Cell Reports, 35(1), 5-15. doi:10.1007/s00299-015-1867-9Karousis, E. D., & Mühlemann, O. (2018). Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harbor Perspectives in Biology, 11(2), a032862. doi:10.1101/cshperspect.a032862Doma, M. K., & Parker, R. (2006). Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature, 440(7083), 561-564. doi:10.1038/nature04530Atkinson, G. C., Baldauf, S. L., & Hauryliuk, V. (2008). Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evolutionary Biology, 8(1), 290. doi:10.1186/1471-2148-8-290Szádeczky-Kardoss, I., Gál, L., Auber, A., Taller, J., & Silhavy, D. (2018). The No-go decay system degrades plant mRNAs that contain a long A-stretch in the coding region. Plant Science, 275, 19-27. doi:10.1016/j.plantsci.2018.07.008Shoemaker, C. J., Eyler, D. E., & Green, R. (2010). Dom34:Hbs1 Promotes Subunit Dissociation and Peptidyl-tRNA Drop-Off to Initiate No-Go Decay. Science, 330(6002), 369-372. doi:10.1126/science.1192430Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I., & Inada, T. (2012). Dom34:Hbs1 Plays a General Role in Quality-Control Systems by Dissociation of a Stalled Ribosome at the 3′ End of Aberrant mRNA. Molecular Cell, 46(4), 518-529. doi:10.1016/j.molcel.2012.03.013Buchan, J. R., & Stansfield, I. (2007). Halting a cellular production line: responses to ribosomal pausing during translation. Biology of the Cell, 99(9), 475-487. doi:10.1042/bc20070037Simms, C. L., Yan, L. L., & Zaher, H. S. (2017). Ribosome Collision Is Critical for Quality Control during No-Go Decay. Molecular Cell, 68(2), 361-373.e5. doi:10.1016/j.molcel.2017.08.019Ozsolak, F., Kapranov, P., Foissac, S., Kim, S. W., Fishilevich, E., Monaghan, A. P., … Milos, P. M. (2010). Comprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation. Cell, 143(6), 1018-1029. doi:10.1016/j.cell.2010.11.020Dimitrova, L. N., Kuroha, K., Tatematsu, T., & Inada, T. (2009). Nascent Peptide-dependent Translation Arrest Leads to Not4p-mediated Protein Degradation by the Proteasome. Journal of Biological Chemistry, 284(16), 10343-10352. doi:10.1074/jbc.m808840200Koutmou, K. S., Schuller, A. P., Brunelle, J. L., Radhakrishnan, A., Djuranovic, S., & Green, R. (2015). Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife, 4. doi:10.7554/elife.05534Van Hoof, A., Frischmeyer, P. A., Dietz, H. C., & Parker, R. (2002). Exosome-Mediated Recognition and Degradation of mRNAs Lacking a Termination Codon. Science, 295(5563), 2262-2264. doi:10.1126/science.1067272Frischmeyer, P. A., van Hoof, A., O’Donnell, K., Guerrerio, A. L., Parker, R., & Dietz, H. C. (2002). An mRNA Surveillance Mechanism That Eliminates Transcripts Lacking Termination Codons. Science, 295(5563), 2258-2261. doi:10.1126/science.1067338Szádeczky-Kardoss, I., Csorba, T., Auber, A., Schamberger, A., Nyikó, T., Taller, J., … Silhavy, D. (2018). The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Research, 46(9), 4632-4648. doi:10.1093/nar/gky279Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.xHanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074Minguet, E. G., Vera-Sirera, F., Marina, A., Carbonell, J., & Blazquez, M. A. (2008). Evolutionary Diversification in Polyamine Biosynthesis. Molecular Biology and Evolution, 25(10), 2119-2128. doi:10.1093/molbev/msn161Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051Kakehi, J. -i., Kuwashiro, Y., Niitsu, M., & Takahashi, T. (2008). Thermospermine is Required for Stem Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 49(9), 1342-1349. doi:10.1093/pcp/pcn109Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756Muñiz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349Imai, A., Hanzawa, Y., Komura, M., Yamamoto, K. T., Komeda, Y., & Takahashi, T. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535Imai, A., Komura, M., Kawano, E., Kuwashiro, Y., & Takahashi, T. (2008). A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of theacl5mutant inArabidopsis thaliana. The Plant Journal, 56(6), 881-890. doi:10.1111/j.1365-313x.2008.03647.xKakehi, J.-I., Kawano, E., Yoshimoto, K., Cai, Q., Imai, A., & Takahashi, T. (2015). Mutations in Ribosomal Proteins, RPL4 and RACK1, Suppress the Phenotype of a Thermospermine-Deficient Mutant of Arabidopsis thaliana. PLOS ONE, 10(1), e0117309. doi:10.1371/journal.pone.0117309Cai, Q., Fukushima, H., Yamamoto, M., Ishii, N., Sakamoto, T., Kurata, T., … Takahashi, T. (2016). TheSAC51Family Plays a Central Role in Thermospermine Responses in Arabidopsis. Plant and Cell Physiology, 57(8), 1583-1592. doi:10.1093/pcp/pcw113Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022Yamamoto, M., & Takahashi, T. (2017). Thermospermine enhances translation of SAC51 and SACL1 in Arabidopsis. Plant Signaling & Behavior, 12(1), e1276685. doi:10.1080/15592324.2016.1276685Von Arnim, A. G., Jia, Q., & Vaughn, J. N. (2014). Regulation of plant translation by upstream open reading frames. Plant Science, 214, 1-12. doi:10.1016/j.plantsci.2013.09.006Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., & Martin, W. F. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1(9). doi:10.1038/nmicrobiol.2016.116Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., … Takahashi, T. (2004). Spermidine Synthase Genes Are Essential for Survival of Arabidopsis. Plant Physiology, 135(3), 1565-1573. doi:10.1104/pp.104.041699Hamasaki-Katagiri, N., Tabor, C. W., & Tabor, H. (1997). Spermidine biosynthesis in Saccharomyces cerevisiae: Polyaminerequirement of a null mutant of the SPE3 gene (spermidine synthase). Gene, 187(1), 35-43. doi:10.1016/s0378-1119(96)00660-9Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V., & Park, M. H. (2013). Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proceedings of the National Academy of Sciences, 110(6), 2169-2174. doi:10.1073/pnas.1219002110Park, M. H., & Wolff, E. C. (2018). Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. Journal of Biological Chemistry, 293(48), 18710-18718. doi:10.1074/jbc.tm118.003341Park, M. H. (2006). The Post-Translational Synthesis of a Polyamine-Derived Amino Acid, Hypusine, in the Eukaryotic Translation Initiation Factor 5A (eIF5A). The Journal of Biochemistry, 139(2), 161-169. doi:10.1093/jb/mvj034Chattopadhyay, M. K., Park, M. H., & Tabor, H. (2008). Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proceedings of the National Academy of Sciences, 105(18), 6554-6559. doi:10.1073/pnas.0710970105Pällmann, N., Braig, M., Sievert, H., Preukschas, M., Hermans-Borgmeyer, I., Schweizer, M., … Balabanov, S. (2015). Biological Relevance and Therapeutic Potential of the Hypusine Modification System. Journal of Biological Chemistry, 290(30), 18343-18360. doi:10.1074/jbc.m115.664490Nishimura, K., Lee, S. B., Park, J. H., & Park, M. H. (2011). Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids, 42(2-3), 703-710. doi:10.1007/s00726-011-0986-zPagnussat, G. C., Yu, H.-J., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., … Sundaresan, V. (2005). Genetic and molecular identification of genes required for female gametophyte development and function inArabidopsis. Development, 132(3), 603-614. doi:10.1242/dev.01595THOMAS, A., GOUMANS, H., AMESZ, H., BENNE, R., & VOORMA, H. O. (1979). A Comparison of the Initiation Factors of Eukaryotic Protein Synthesis from Ribosomes and from the Postribosomal Supernatant. European Journal of Biochemistry, 98(2), 329-337. doi:10.1111/j.1432-1033.1979.tb13192.xCooper, H. L., Park, M. H., Folk, J. E., Safer, B., & Braverman, R. (1983). Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proceedings of the National Academy of Sciences, 80(7), 1854-1857. doi:10.1073/pnas.80.7.1854Shiba, T., Mizote, H., Kaneko, T., Nakajima, T., Yasuo, K., & sano, I. (1971). Hypusine, a new amino acid occurring in bovine brain. Biochimica et Biophysica Acta (BBA) - General Subjects, 244(3), 523-531. doi:10.1016/0304-4165(71)90069-9Park, M. H., Cooper, H. L., & Folk, J. E. (1981). Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proceedings of the National Academy of Sciences, 78(5), 2869-2873. doi:10.1073/pnas.78.5.2869Saini, P., Eyler, D. E., Green, R., & Dever, T. E. (2009). Hypusine-containing protein eIF5A promotes translation elongation. Nature, 459(7243), 118-121. doi:10.1038/nature08034Schuller, A. P., Wu, C. C.-C., Dever, T. E., Buskirk, A. R., & Green, R. (2017). eIF5A Functions Globally in Translation Elongation and Termination. Molecular Cell, 66(2), 194-205.e5. doi:10.1016/j.molcel.2017.03.003Gäbel, K., Schmitt, J., Schulz, S., Näther, D. J., & Soppa, J. (2013). A Comprehensive Analysis of the Importance of Translation Initiation Factors for Haloferax volcanii Applying Deletion and Conditional Depletion Mutants. PLoS ONE, 8(11), e77188. doi:10.1371/journal.pone.0077188Kyrpides, N. C., & Woese, C. R. (1998). Universally conserved translation initiation factors. Proceedings of the National Academy of Sciences, 95(1), 224-228. doi:10.1073/pnas.95.1.224Navarre, W. W., Zou, S. B., Roy, H., Xie, J. L., Savchenko, A., Singer, A., … Fang, F. C. (2010). PoxA, YjeK, and Elongation Factor P Coordinately Modulate Virulence and Drug Resistance in Salmonella enterica. Molecular Cell, 39(2), 209-221. doi:10.1016/j.molcel.2010.06.021Lassak, J., Keilhauer, E. C., Fürst, M., Wuichet, K., Gödeke, J., Starosta, A. L., … Jung, K. (2015). Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 11(4), 266-270. doi:10.1038/nchembio.1751Bullwinkle, T. J., Zou, S. B., Rajkovic, A., Hersch, S. J., Elgamal, S., Robinson, N., … Ibba, M. (2013). (R)-β-Lysine-modified Elongation Factor P Functions in Translation Elongation. Journal of Biological Chemistry, 288(6), 4416-4423. doi:10.1074/jbc.m112.438879Balibar, C. J., Iwanowicz, D., & Dean, C. R. (2013). Elongation Factor P is Dispensable in Escherichia coli and Pseudomonas aeruginosa. Current Microbiology, 67(3), 293-299. doi:10.1007/s00284-013-0363-0Blaha, G., Stanley, R. E., & Steitz, T. A. (2009). Formation of the First Peptide Bond: The Structure of EF-P Bound to the 70
S
Ribosome. Science, 325(5943), 966-970. doi:10.1126/science.1175800Melnikov, S., Mailliot, J., Shin, B.-S., Rigger, L., Yusupova, G., Micura, R., … Yusupov, M. (2016). Crystal Structure of Hypusine-Containing Translation Factor eIF5A Bound to a Rotated Eukaryotic Ribosome. Journal of Molecular Biology, 428(18), 3570-3576. doi:10.1016/j.jmb.2016.05.011Schmidt, C., Becker, T., Heuer, A., Braunger, K., Shanmuganathan, V., Pech, M., … Beckmann, R. (2015). Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Research, 44(4), 1944-1951. doi:10.1093/nar/gkv1517Gutierrez, E., Shin, B.-S., Woolstenhulme, C. J., Kim, J.-R., Saini, P., Buskirk, A. R., & Dever, T. E. (2013). eIF5A Promotes Translation of Polyproline Motifs. Molecular Cell, 51(1), 35-45. doi:10.1016/j.molcel.2013.
60-GHz Single-Layer Slot-Array Antenna fed by Groove Gap Waveguide
[EN] A V-band single-layer low-loss slot-array antenna is presented in this letter. Radiating slots are backed by coaxial cavities, which are fed through a groove gap waveguide E-plane corporate feed network. Cavity resonances are created by shortening nails with respect to the surrounding ones. This fact enables a compact single-layer architecture since coaxial cavities and feeding network can share the same bed of nails. A 16 x 16 array is designed, constructed, and measured to demonstrate the viability of this concept for high-gain single-layer slot-array antennas. In addition, this solution can be extended to circular polarization by seamlessly adding a polarizer above the slots without changing the feeding network piece. Measurements show a relative bandwidth of 10% with input reflection coefficient better than -10 dB and a mean antenna efficiency above 70% within the operating frequency band (57-66 GHz).This work was supported by the Spanish Ministry of Economy and Competitiveness under Project TEC2016-79700-C2-1-R.Ferrando-Rocher, M.; Valero-Nogueira, A.; Herranz Herruzo, JI.; Teniente, J. (2019). 60-GHz Single-Layer Slot-Array Antenna fed by Groove Gap Waveguide. IEEE Antennas and Wireless Propagation Letters. 18(5):846-850. https://doi.org/10.1109/LAWP.2019.2903475S84685018
Low-Sidelobe Flat Panel Array Fed by a 3D-Printed Half-Mode Gap Waveguide Amplitude-Tapering Network
[EN] This article presents the design and evaluation of an 8 x 8 Ka-band low-sidelobe slot array antenna using gap waveguide technology. The slot array is fed by a single-layer amplitude-tapering network implemented in half-mode groove gap waveguide, resulting in a low-profile, low-sidelobe antenna. The simplicity of the proposed feeding network, composed of a novel design of asymmetrical dividers, enables precise fabrication using cost-effective additive techniques. Experimental results demonstrate a significant reduction in sidelobe levels compared to traditional uniform arrays, with a radiation efficiency exceeding 84%. This design, featuring simple and robust asymmetrical splitters, is well-suited for applications requiring high gain and low interference.This work was supported in part by MCIN/AEI/10.13039/501100011033, and in part by ERDF A Way of Making Europe under Project
PID2019-107688RB-C22 and Project PID2022-141055NB-C21.Castellá-Montoro, A.; Ferrando-Rocher, M.; Herranz Herruzo, JI.; Valero-Nogueira, A. (2024). Low-Sidelobe Flat Panel Array Fed by a 3D-Printed Half-Mode Gap Waveguide Amplitude-Tapering Network. IEEE Access. 12:2607-2614. https://doi.org/10.1109/ACCESS.2023.3347222260726141
A Novel Circularly-Polarized T-shaped Slot Array Antenna in Ka-band
[EN] A T-shaped slot-array antenna fed through a Groove
Gap Waveguide (GGW) is presented in this paper. The array
antenna operates at 30 GHz. The way the slots are excited,
along with the T-shape on its lid allows a compact single-layer
architecture. A uniform linear array of 12 elements is designed to
demonstrate the viability of this concept for high-efficient singlelayer slot-array antennas. Preliminary results show a frequency
bandwidth of 1 GHz with input reflection coefficient better than
¿12 dB. In addition, being a full-metal antenna, the expected
efficiency is high. It is worth stressing the good polarization purity
achieved, being below 1.5 dB within the band of interest.This work has been supported by the Spanish Ministry of
Science, Innovation and Universities (Ministerio de Ciencia,
Innovacion y Universidades) under project TEC2016-79700-C2-1-R.Ferrando-Rocher, M.; Herranz Herruzo, JI.; Sánchez-Escuderos, D.; Valero-Nogueira, A. (2020). A Novel Circularly-Polarized T-shaped Slot Array Antenna in Ka-band. IEEE. 1-3. https://doi.org/10.23919/EuCAP48036.2020.9135490S1
Dual Circularly-Polarized Slot-Array Antenna in Ka-Band fed by Groove Gap Waveguide
[EN] A dual circularly-polarized slot-array antenna fed by a Groove Gap Waveguide (GGW) and operating in the KaBand is presented in this paper. A simple mechanism is proposed to switch the polarization, from RHCP to LHCP, and viceversa. The lid of the antenna has two pieces: one fixed and one sliding. The fixed piece hosts T-shaped slots, and the sliding block is in charge of adjusting the offset of the perpendicular grooves with respect to the longitudinal slots. Preliminary results show an axial ratio below 1.5 dB for both, RHCP and LHCP, within a bandwidth of 1 GHz centered at 30 GHz.This work has been supported by the Spanish Ministry of Science, Innovation and Universities (Ministerio de Ciencia, Innovacion y Universidades) under project TEC2016-79700-C2-1-R.Ferrando-Rocher, M.; Herranz Herruzo, JI.; Sánchez-Escuderos, D.; Valero-Nogueira, A. (2020). Dual Circularly-Polarized Slot-Array Antenna in Ka-Band fed by Groove Gap Waveguide. IEEE. 421-422. https://doi.org/10.1109/IEEECONF35879.2020.9329473S42142
True-Time-Delay Mechanical Phase Shifter in Gap Waveguide Technology for Slotted Waveguide Arrays in Ka-band
This paper proposes a novel all-metal mechanical phase shifter in gap waveguide technology. The phase shifter is aimed at providing beam-scanning capabilities to conventional slot array antennas along the elevation plane. To validate experimentally the beam-steering functionality, a 4×8 slot-array antenna has been designed and fabricated, along with the phase-shifting mechanism. The whole antenna consists of two pieces: a lower rotatable block, which changes the length of concentric Groove Gap Waveguides, and an upper fixed block, where the slot-array antenna is placed. Experimental results validate the proposed concept, having obtained steering angles of up to 25∘, with gain levels around 20 dBi with an antenna efficiency close to 90%. A reflection coefficient below –10 dB is achieved for a wide range of rotation angles from 29.5 GHz to 30.5 GHz. The proposed phase shifter is completely scalable to any array size and its true-time-delay nature enables wide steering ranges for closely-spaced slot arrays with wideband radiation performance.This work was supported by the Spanish Ministry of Economics and competitiveness under project TEC2016-79700-C2-1-R
- …