
Visual Spike-based Convolution Processing with
a Cellular Automata Architecture

M. Rivas-Perez, A. Linares-Barranco, J. Cerda, N. Ferrando, G. Jimenez, A. Civit

Abstract-this paper presents a first approach for

implementations which fuse the Address-Event-Representation

(AER) processing with the Cellular Automata using FPGA and

AER-tools. This new strategy applies spike-based convolution

filters inspired by Cellular Automata for AER vision

processing. Spike-based systems are neuro-inspired circuits

implementations traditionally used for sensory systems or

sensor signal processing. AER is a neuromorphic

communication protocol for transferring asynchronous events

between VLSI spike-based chips. These neuro-inspired

implementations allow developing complex, multilayer,

multichip neuromorphic systems and have been used to design

sensor chips, such as retinas and cochlea, processing chips, e.g.

filters, and learning chips. Furthermore, Cellular Automata is a

bio-inspired processing model for problem solving. This

approach divides the processing synchronous cells which

change their states at the same time in order to get the solution.

I. INTRODUCTION

C
ELULLAR organization in biology has been an

inspiration in several fields, such as the description and

definition of Cellular Automata (CA). They are discrete

models that consist of a regular grid of cells. Each cell has an

internal state which changes into discrete steps and knows

just one simple way to calculate the new internal state like a

rudimentary automaton. Cellular activity is carried out

simultaneously like it occurs in biology. Von Neumann

refers to this system as a Cellular Space and is known

currently as Cellular Automata [1].

The first self-reproducing CA, proposed by von Neumann

consisted of a 2D grid of cells, and the self-reproducing

structure was composed of several hundreds of elemental

cells. Each cell presented 29 possible states [2]. The

evolution rule was defmed as a function of current state of

the cell and its neighbours (up, down, right and left). Due to

the high complexity of the model, von Neumann rule has

never been implemented in hardware, but some partial

implementations have been obtained [3].

Address-Event- Representation (AER) is a spike-based

representation technique for communicating asynchronous

spikes between layers of different chips. The spikes in AER

This work was supported by the Spanish grants SAMANTA II
(TEC2006-11730-C03-02) and VULCANO (TEC2009-10639-C04-02),
and by the Andalusia Council grants BrainSystems (P06-TIC-01417).

M. Rivas-Perez, A. Linares-Barranco, G. Jimenez, and A. Civit are with
the Dept. of Computer Architecture and Technology, University of Seville,
Seville, SPAIN (e-mail: mrivas@atc.us.es).

J.Cerdli and N. Ferrando are with the Dept. of Electronic Engineering
Tech University of Valencia, Valencia, SPAIN.

are carried as addresses of neurons (called events) on a

digital bus. This bio-inspired approach was proposed by the

Mead lab in 1991 [4].

There is a world-wide community of AER protocol

engineers and researchers for bio-inspired applications in

vision and audition systems and robot control, as it is

demonstrated by the success in the last years of the AER

group at the Neuromorphic Engineering Workshop series

[5]. The goal of this community is to build large multi-chip

and multi-layer hierarchically structured systems capable of

performing massively-parallel data-driven processing in real

time [6].

One of the first processing layers in the cortex consists of

applying different kinds of convolution filters with different

orientations and kernel sizes. Complex filtering processing

based on AER convolution chips have been already

implemented, which are based on Integrate and Fire (IF)

neurons [7]. When an event is received, a convolution kernel

is copied in the neighbourhood of the targeted neuron. When

a neuron reaches its threshold, a spike is produced and the

neuron is reset. Bi-dimensional image convolution is defined

mathematically by the following equation, being K an nxm

convolution kernel matrix, X the input image and Y the

convolved image.
nl2 ml2

'if -"Y(i,j) == L LK(a,b).X(a+i,b+ j)
i,j a�-nI2b�-mI2

Each convolved image pixel Y(iJ) is defmed by the

corresponding input pixel X(i,j) and weighted adjacent

pixels, scaled by K coefficients. Therefore an input pixel

X(i,j) contributes to the value of the output pixel Y(iJ) and

their neighbours, multiplied by the corresponding kernel

coefficients K.
Digital frame-based convolution processors implemented

in FPGA or CPUs usually measure their performance by

calculating the number of operations per second (MOPS). A

comparative study between frame-based and spike-based

convolution processors was presented in [8]. A frame-based

3x3 kernel convolution processor in a Spartan-III FPGA

yielded 139 MOPS, whereas spike-based one yielded 34.61

MOPS for the same kernel. Nevertheless, frame-based llxll

kernel convolution processors decreased their performance

to 23 MOPS, while the spike-based processors increased

their performance to 163.51 MOPS. Therefore, spike-based

convolution processors may achieve higher performances for

the same hardware availability. This has to be thanked to the

fully parallel processing allowed by AER or spike-based

processing.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286563308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Another approach for solving frame-based convolutions

with higher performances is the ConvNets [7] [9]. They are

based on cellular neural networks and can achieve theoretical

sustained 4 GOPS for 7x7 kernel sizes.

This paper presents two implementations of AER spike

based convolution processor for 3x3 kernel sizes using

architectures inspired by Cellular Automata. These

processors have been described into VHDL and

implemented for a Spartan II 200 Xilinx FPGA with a 50

MHz clock. A performance analysis has been carried out by

USB-AER tools [10]. This processor can yield up to 150

MOPS for 3x3 kernel sizes, which implies a performance of

up to 2 GOPS for a possible llxll kernel implementation.

Next section introduces and describes CA, AER and how

they can work together. Section III presents architectures,

results and future works about AER image filtering

implementations based on CA. Finally the conclusions are

presented in section IV.

II. AER PROCESSING BASED ON CELLULAR
AUTOMATA

A. Cellular Automata

A Cellular Automata consists of a regular 2D array of cells.

The state of each cell is defmed by a set of bits and varies

longitudinally according to an evolution rule. This evolution

rule should be the same for all the cells and it is a function of

the current internal state of the cell and its neighbourhood

[1], so it does not depend on external stimulus. These

neighbours are a fixed set of cells adjacent to the specified

cell. A new generation is created every time the rule is

applied to the whole grid. A global clock signal sets when

the state of the cell is updated.

B. AERfor spike-based systems

Address-Event-Representation (AER) is a communication

protocol for transferring asynchronous events between VLSI

neuro-inspired chips, originally developed for bio-inspired

processing systems [4]. Every time a neuron generates a

pike, a digital word (called event), which identifies the

neuron, is placed on an external AER bus. A receiver chip

decodes the received event and sends a spike to the

corresponding neuron. This way each neuron from a sender

chip is virtually connected to a corresponding neuron in the

receiver chip through a single time division multiplexed bus.

These neurons carry out an internal processing for every

arriving spike and can produce an output spike or stream of

spikes in response. The most active neurons access the bus

more frequently than less active ones. An arbitration circuit

ensures that neurons do not access the bus simultaneously.

This AER circuit is usually built using self-timed

asynchronous logic as it is discussed in [11].

AER chips develop hierarchical systems composed by

layers of neurons like a brain. Results of one layer represent

the input of the next layer or a feedback of a previous one.

Furthermore, like in a biological neural system, several AER

devices such as visual sensors (retina [12]), audio sensors

(cochlea), filters and learning chips have been developed, as

well as a set of glue tools (AER tools) which facilitate

developing and debugging of these spike-based multi-layer

hierarchical systems. For example, a synthetic AER

generator is a tool that reproduces any test bench stimulus

for debugging purposes, thus it is able to transform a

sequence of static frames into AER stream of spikes [13].

Transmitting event addresses through the AER bus allows

performing additional operations on the events while they are

travelling from one chip to another. For example, the output

of an AER retina can be easily translated, scaled, or rotated

by simple mapping operations on the emitted addresses.

These mapping can either be lookup-based (using, e.g. an

EEPROM) or algorithmic. Furthermore, the events that a

chip transmits can be received by many receiver chips in

parallel, by handling the asynchronous communication

protocol properly.

The AER information transmitted by a visual AER sensor

or a synthetic AER generator is usually coded in gray, i.e. the

number of events (in other words, the frequency of spikes)

transmitted by a pixel through the AER bus identifies the

gray level of that pixel or the intensity of the pre-processed

result.

C. Cellular Automatafor AER processing

The philosophy of AER systems is lightly different from

CA but also similar in a certain sense. A CA is a cooperative

system, whose evolution only depends on the input and its

neighbours, but an AER system usually does not implement

evolution rules for producing new output spikes, i.e. it only

produces spikes when a stimulus arrives. Nevertheless, they

cooperate with the neighbourhood to produce a response.

Spike-based convolution processor cells communicate with

their neighbours somehow for the kernel processing, but the

results are produced only when a stimulus arrives.

A spike-based convolution processor inspired in CA is

suggested to filter a visual stimulus for edge detection

(detecting vertical and! or horizontal contrast changes) using

a non-evolutionary process. The output of this edge detection

produced by a set of cells may be communicated in an

evolution way for detecting predefined objects. For example,

in a spike-base convolution processor of 3x3 kernels

configured to detect edges and stimulated by spikes from a

diamond image, only the edge cells of the diamond may

produce events. This represents the convolution output. But

if each output spike is sent to the neighbours, there will be

cells receiving spikes that represent the edge detection from

their neighbours at the same time. If these spikes are

transmitted through the neighbourhood, at the end the pixel

in the centre of an object will receive edge detection

information from several sides at the same time, what allow

identifying the centre of a diamond or a square or a circle,

for example. There will be a junction cell for these spikes

that represents the centre of the object. In this case, the 20

array of cell may be implementing an edge detector using the

3x3 kernel convolution processor, but it may also have the

same cells implementing a next processing layer, like an

object centre detector.

This paper discusses a start point of this theory by

implementing convolutions using a 20 array of cells that

communicates with a predefined neighbourhood.

D. AER Image filtering strategy

When an event arrives from an emitter chip, its address is

decoded and a spike is sent to the corresponding cell. For

each spike received, several operations are arranged to

transform the target cell and the neighbourhood. These are

summarized below:

• The cell which received a spike resends it to its neighbours
and updates its state with an increment of the kernel centre.

• The state of each neighbour is incremented by the
corresponding kernel element, which depends on where the
spike comes from, i.e., each spike received brings on
several increment operations in the kernel size
neighbourhood of the target cell. When the specific cell
and its neighbours are updated, an acknowledge signal is
sent to the AER emitter.

• When the state of a cell achieves the threshold, this cell
generates an event and resets its state. The threshold value
is constant in the whole grid. This behaviour corresponds
to the Integrate and Fire neuron model.

The number of events that a cell receives depends on the

gray level of the corresponding pixel, so the specific cell and

its neighbours are incremented as many times as the gray

level, implementing the mUltiplication of the convolution

operation.

COL DEC
DO

Addr

Dn

ROW DEC In

In utEventX
Addr

DO

Dn

COL DEC
DO

Addr

Dn

In

M(O,O) M(O,1) M(O,2)

M(1,O) M(1,1) M(1,2)

M(2,O) M(2,1) M(2,2)

III. IMPLEMENTATION ON FPGA

A. USB-AER board

The USB-AER board includes a relatively large FPGA

(Spartan-II 200) that can be loaded from MMC/SO or USB

(through the C8051 F320 microcontroller), a large SRAM

bank (512Kx32 12ns) and two AER ports [10]. An input

AER bus and an output AER bus connected directly to the

FPGA allows implementing any hardware for manipulating

or processing AER information.

The USB-AER tool has several functionalities according

to the module that is loaded in the FPGA (through MMC/SO

or USB). For example, it may act as a sequencer, monitor,

mapping, event processor, datalogger, etc. Most of such

functionalities can be performed in a standalone manner.

This standalone operating mode requires to load the FPGA

and the mapping RAM from some type of non-volatile

storage so that it can be easily modified by the users, e.g.

MMC/SO cards. USB input is also provided for development

stages. Due to the bandwidth limitations of full speed USB

(12Mbitls), a based-event to frame conversion is essential in

this board for high or even moderate event rates [10].

The present work increases these functionalities by

including two versions of filters based on CA. The first

version comes from the CA concept: hardware implements

independent cells that evolve and communicate with their

neighbours. The second version optimizes resources by

exploiting a quirk of the AER-CA: only the targeted cell and

its neighbours work when a spike arrives, i.e., this spike only

affects that neighbourhood. The neighbourhood size is the

same as the convolution kernel size. Therefore, it may be

possible to keep the results of the whole 20 array in memory

and to implement only a shared set of cells that perform the

ROW ARB

Row 0

SelRow
Out utEventX

Rown

COL ARB

1>-+-....,...<>1 ColO

Coin

Muxn:1
Mux rrl

Threshold--------'

Fig. I. Block diagram of CA through distributed computational units

operations needed to calculate the result of the convolution

when a new spike arrives. Both versions are described

below.

Next sub-section presents the implementation of the whole

20 array, and sub-section C describes a resource sharing

implementation using distributed memory to store the 20

processing result.

B. Implementation based on distributed computational
units

A 3x3 kernel implementation has been described into

VHOL for Spartan-II 200. Larger kernel sizes require FPGA

with more resources than Spartan-II. Each cell in a 3x3

kernel implementation is connected to eight neighbours.

Figure 1 illustrates the main diagram of this

implementation. AER input is connected to the grid through

two-level decoders. When an event comes, e.g. from a vision

sensor, its address is divided into row and column. The first

level decodes the row by Input Event X and the second level

decodes the column by Input Event Y in order to select the

targeted cell. Input Req signal notifies when the new event

arrived.

Each cell is also connected to a two-level arbiter. The first

level consists of a row arbiter and OR gates to encode the

output event row address (Output Event X). The second

level is composed of a column arbiter and an array of

multiplexors. This array selects a row from the grid and it is

controlled by the first level. The column arbiter encodes

dock
OutAck
OutRea

Mux8:1

r------..-MatrL'l:O 0
DO

fVfatnx I
Dl

Mam'l:
02

Matnx I MUX2:l
D3

� Matrix I 2
D4 0 N am'l: '])

i"""'C' 05 DI Mam'l: _ I
D6 SO

fVfam'l: __
07 L---

ENC8:3

DO � Dl � S2

D2 AO
D3 Al

r---t" D4 A2
r----'> D5

----0 D6

,---0 D7

ReaNeiah 0,0
ReaNeiah 0.1 ,
ReaNeiah 0,2 J
ReoNeUth 1,0
ReaN�12 \
ReoNeUth 20 J
ReoNeigh 2 I

ReoNeiah 2,2 ,
JnRea 7

I
M.!TI" 1 1

Threshold

output event column address (Output Event Y) from the array

of multiplexer. The array of mUltiplexors and a multiplexor

connects the cell to the output. 3x3 kernel elements and

threshold are available for all cells of the grid as figure 1

shows. Each cell is connected to its eight neighbours through

a single wire, only request signal, to minimize the number of

connections.

Figure 2 shows the digital logic of each cell in the grid. A

cell consists basically of two multiplexers to select the kernel

coefficient to add (Mux8: 1 and Mux2: 1), an adder ADD8 to

update the cell internal state, a register FD8CE to save the

state, a comparator COMP to calculate when the cell must

fire, 0 Flip-Flop FDSR to communicate the cell with the

arbiters by handshaking process and some logic gates to

control the overflow. The lower overflow is also controlled

because some kernel coefficients may be negative.

When receiving a spike, this cell increment its internal

state according to kernel centre by ADD8 and sends a spike

to its eight neighbours simultaneously. Each one of these

neighbours adds a kernel coefficient to its internal state

depending on where the spike arrives, e.g. when a spike

comes from the bottom right cell, it adds the bottom right

coefficient of the kernel to its internal state. That is, the cell

that receives the spike and its eight neighbours (nine cells in

total) modifY their states by the corresponding kernel

element. This implies a restriction in the system that makes

the kernel sizes to be small for a Spartan II 200 FPGA.

VCC
{FOSR:

D Q C>-

I....--....c C
R

-�
ADD8

FD8CE

S[7 .. 0] D[7 .. 0] Q[7 .. 0] t::o 7
K�.
�

,--/
B[7 .. 0] r � CLK

C CLR

-�

�� l COMP

A[7 .. 0]
Gf I>-

B[7 .. 0]

tJ

Fig. 2. Block diagram of a cell

When the state of a cell reaches the threshold, the

comparator COMP in the figure 2 resets its state and saves a

request in the FDSR. The output arbiter processes the fired

cells by a fixed priority. This arbiter generates the output

event address according to the cell attended. When this

output event is acknowledged, the arbiter clears the request

stored in the FDSR of the cell.

When all fired cells are attended, an acknowledge signal is

sent to the emitter AER chip and therefore processing of the

incoming event concludes. In this way, no new input events

can arrive before the current event has finished. This

constrain simplifies this design because:

• An Input FIFO is not needed to store all new events that

arrive while the current event is being processed.

• Output arbiter may be fixed priority because there is no

risk that lower priority cells starve and a fixed priority

arbiter is the simplest implementation.

• Each cell never has more than one pending request, so a

single FDSR is needed and then less resource are required.

C. Implementation based on distributed memory

A design based on distributed computational unit wastes

many resources (see results bellow) because each cell is

implemented by a different computational unit; but only nine

cells of the whole grid work simultaneously, i.e. the selected

cell and its eight neighbours, so only a few resources are

used at the same time.

This section describes a new implementation based on

nine shareable computational units. Each unit always works

with the same kernel element but different cells. In the

previous design each computational unit stores a cell state,

but in this new implementation all states are saved in RAM

memory because there is not one unit per cell. RAM memory

is divided into nine banks so that nine computational units

can access one memory bank at the same time. These states

are distributed to nine RAM memory banks in a way that

each computational unit accesses a different RAM bank

simultaneously every time an event arrives.

Each computational unit always uses the same kernel

element and modifies the state of same neighbour relative to

the target cell, for example, the upper left unit always works

with the upper left kernel element and the upper left

neighbour of the targeted cell. The left side of the figure 3

shows an example about how it works. Each location in the

grid indentifies a cell and it is labelled by Bx where x is the

number of bank associated to that cell. When the cell C(3, 2)
receives an spike, a computational unit uses the kernel

element K(J, /) and the bank B2 to modifY the state of cell

C(3, 2), another one uses the kernel element K(O, 0) and the

bank B7 to modifY the state of neighbour (2,1), and so on up

to nine units, but each unit accesses a different bank.

When each cell stores its state, the memory address and

the memory bank are calculated as the following:

• Event address is divided into row and column coordinates.

• Each coordinate is incremented and decremented in order

to obtain the address of nine neighbours as a couple of

coordinates. For example, cell address (3,8) generates eight

addresses (2,7), (2,8), (2,9), (3,7), (3,9), (4,7), (4,8) and

(4,9).
• Every coordinate (original, incremented and decremented

coordinate for row and column) is divided in 3. In the

above example, row coordinates are 2, 3 and 4; and column

coordinates are 7, 8 and 9.

• The quotient of division denotes the memory address. Six

calculated quotients are combined in pairs, quotient from a

row and column to get memory address of the nine cells.

• The reminder of division indicates the memory bank. The

calculation process of memory banks is the same as

memory addresses but a reminder is used.

A separate router connects automatically each

computational unit to the corresponding cell state by using

addresses and banks calculated so that units do not have to

control RAM memory directly.

As in distributed computational unit implementation,

every computational unit calculates the new state adding the

corresponding kernel coefficient to current state. When cell

state achieves the threshold, resets its state and saves a

request in its FDSR (figure 2) until the output fixed priority

arbiter processes it. When the arbiter dispatches all requests,

an input acknowledge signal is sent to sender and the system

o 1 2 3 4 5 3x3 Kernel
o BO B1 B2 BO B1 B2
1 B3 B4 B5 B3 B4 B5
2 B6 B7 B8 B6 B7 88
3 BO B1 82 80 B1 B2
4 B3 B4 B5 B3 B4 B5
5 B6 B7 B8 B6 B7 B8

SxS cell grid

K(O,O) K(O, 1) K(O,2)
K(1,O) K(1,1) K(1,2)
K(2,O) K(2, 1) K(2,2)

Cell C(3,2)

Fig. 3. Example of how memory banks are assigned

waits for a new event. Figure 3 at the right shows snapshots

of how these implementations work when an edge detection

kernel is used.

D. Testing Scenario

Three USB-AER boards have been connected in line in

order to test and measure the performance of these

processors.

A sequencer firmware is loaded in the first board to send a

stream of events to the second one. This stream depends on

the image previously loaded in the FPGA memory. A

diamond image as figure 3 shows is uploaded in memory to

test firmware.

The convolution processor to be tested is loaded in the

second USB-AER board. The board receives spikes from the

sequencer and carries out the filtering operation according to

3x3 kernel loaded. Filter parameters, such as kernel

coefficients and threshold, are controlled from a computer

application via USB. The right side of the figure 3 illustrates

the original and resultant image when a 3x3 kernel is applied

for extracting edges.

The third USB-AER board receives events from the

convolution processor. A datalogger or framegrabber

firmware can be loaded in this board. The datalogger

firmware is able to store, in real-time, not only the address of

the spikes produced by the AER-CA, but also the time when

they are produced. Therefore, the spikes captured can be

processed off-line by MatIab to test the processor and

measure performance. The frame grabber firmware rebuilds

the resultant image from the spikes received and sends this

frame to a computer via USB to be displayed.

A windows application called Multi-LoadFPGA or MatIab

controls and configures every USB-AER via USB without

reloading the FPGA.

E. Result

The event rate achieved is determined not only by

convolution processor delay but also by input and output

event rate. The input event rate depends on the image loaded

into the sequencer and the output event rate is related to the

kernel coefficients and threshold.

AER-CA based on distributed computational units

requires three clock cycles for every event received: a

synchronization cycle, a cycle for edge detection and another

one to calculate cell states. Furthermore, this version requires

two cycles for every new event generated: one cycle to send

an event and another one to wait for the acknowledgement.

This implementation yields up to 16.6 mega-events per

second when no event is generated. In addition, nine ADD

operations are computed every three cycles, thus the system

yields up to 150 MOPS when a 50 MHz clock is used.

This implementation requires many resources to

implement the cell grid. The largest grid that may be loaded

in a Spartan-II 200 is an 8x8 grid. This grid spends 84% of

all resources and allows clock frequencies of up to 52 MHz.

A 16x16 grid requires a FPGA three times larger.

AER-CA based on distributed memory requires six clock

cycles per received event. Unlike the previous version, this

firmware requires four cycles to calculate cell states: A cycle

to calculate memory addresses and banks, a cycle to connect

each unit to the appropriate bank, another one to read the

current state and the last one to write the new state in

memory. As the former implementation, this version also

requires two cycles per event. It performs up to 8.3 mega

events per second and 75 MOPS.

This version saves more resources in comparison to the

former one. This version allows grids of up to 32x32 in a

Spartan-II. This grid spends just 28% of the internal logic

and uses 9 of 14 memory banks. A larger grid requires

adding four memory banks more because the number of

banks must be multiple of nine at least.

F. Future Improvements

Both proposed versions require saving the state of every

cell to calculate new states from the previous one, but it

wastes many resources. A probabilistic version may be

developed, which cells fire depending on a probabilistic

matrix, to avoid storing cell states. Under this new vision, a

random number and the corresponding probability

coefficient determine when cells fire instead of adding kernel

coefficients until threshold is achieved. This new version

may increase processing speed and may work with larger

grids in the Spartan-II.

IV. CONCLUSIONS

This paper proposes AER neuro-inspired filters for vision

processing by a Cellular Automata approach. These filters

can implement two layers, one for the input processing and

the second one thanks to the evolution rule.

Two AER filters based on 3x3 kernel convolutions have

been implemented for FPGA using a Cellular Automata

approach. An AER filter based on distributed computational

units has been implemented in which each cell is assigned to

a different computational unit. This implementation performs

up to 150 MOPS for a 3x3 kernel and yields up to 16.6

Mega-events per second in a Spartan-II.

An improved version called AER Cellular Automata in

distributed memory has also been implemented to save

resources by reducing a number of computational units. A

performance of 75 MOPS has been measured for 3x3

kernels. This performance may be easily improved for higher

kernel size, allowing up to 2 GaPS for llxll kernels, which

is feasible for the distributed memory implementation.

A real scenario has been used to prove these

implementations consisting of an AER sequencer, the AER

CA convolution processor to test, and an AER monitor or

datalogger.

ACKNOWLEDGMENT

The authors would like to thank the Technical University

of Valencia for hosting first author during April 2009 for

developing this work. The authors also thank the Spanish

grants SAMANTA II (TEC2006-11730-C03-02),

VULCANO (TEC2009-10639-C04-02) and BrainSystems

(P06-TI C-O 1417) for supporting this work.

REFERENCES

[1] 1. von Neumann, "The Theory of Self-reproducing Automata", A.
Burks, ed. , Univ. of Illinois Press, Urbana, IL, 1966.

[2] A. Burks (ed). Essays on Cellular Automata. Univ. Illinois Press.
1970.

[3] U. Pesavento. An implementation of von Neumann's self-reproducing
machine. Artificial Life, Vol. 2, pp. 337-354, 1995.

[4] M. Sivilotti, "Wiring Considerations in analog VLSI Systems with
Application to Field-Programmable Networks", Ph.D. Thesis,
California Institute of Technology, Pasadena CA, 1991.

[5] A. Cohen et aI. , Report to the National Science Foundation:
Workshop on Neuromorphic Engineering, Telluride, Colorado, USA,
June-July 2006. [www.ine-web.org]

[6] M. Mahowald. "VLSI Analogs of Neuronal Visual Processing: A
Synthesis of Form and Function". Ph.D. Thesis. California Institute of
Technology, Pasadena, California 1992.

[7] C. Farabet, C. Poulet, J. Y. Han, Y. LeCun. "CNP: An FPGA-based
Processor for Convolutional Networks". International Conference on
Field Programmable Logic and Applications, 2009. FPL 2009.

[8] A. Linares-Barranco, R. Paz, F. Gomez-Rodriguez, A. Jimenez, M.
Rivas, G. Jimenez and A. Civit "FPGA Implementations comparison
of Neuro-Cortical inspired Convolution Processors for Spiking
Systems". Lecture Notes in Computer Science Vol. 5517, pp.97-105,
2009.

[9] N. Farrig, F. Mamalet, S. Roux, F. Yang, M. Paindavoine. "Design of
a Real-Time Face Detection Parallel Architecture Using High-Level
Synthesis". Hindawi Publishing Corporation. EURASIP Journal on
Embedded Systems. Vol. 2008, id 938256, doi:l0.l155/2008/938256

[10] F. Gomez-Rodriguez, R. Paz, A. Linares-Barranco, M. Rivas, L. Miro,
G. Jimenez, A. Civit. "AER tools for Communications and
Debugging". Proceedings of the IEEE ISCAS 2006, Kos, Greece. May
2006.

[11] K. A. Boahen. "Communicating Neuronal Ensembles between
Neuromorphic Chips". Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.

[12] Lichtsteiner, P. ; Posch, C. ; Delbruck, T. "A 128x 128 120 dB 15 I1S
Latency Asynchronous Temporal Contrast Vision Sensor". IEEE
Journal of Solid-State Circuits, IEEE Journal, Vol 43, Issue 2, pp.
566-576, Feb. 2008.

[13] A. Linares-Barranco, G. Jimenez-Moreno, A. Civit-Ballcels, and B.
Linares-Barranco. "On Algorithmic Rate-Coded AER Generation".
IEEE Transaction on Neural Network, Vol. 17, No. 3, pp. 771-788,
May, 2006.

