84 research outputs found
Analisis numerico de una bomba semiaxial
This spanish language paper presents the three-dimensional turbulent flow through the impeller passages and surroundings of a mixed-flow pump. The model has five impeller blades mounted on a conical hub and nine stator blades in a diffuser which brings the diagonally outward flow back to the axial direction. This pump was tested with air, giving a nominal flow-rate of 1.01 m3/s and 250 Pa at 1200 rpm
Correction: The European Society for Blood and Marrow Transplantation (EBMT) consensus guidelines for the detection and treatment of donor-specific anti-HLA antibodies (DSA) in haploidentical hematopoietic cell transplantation
The original version of this Article contained a typographical error in the spelling of the author Marcelo Fernandez-Vina, which was incorrectly given as Marcelo Fernadez-Vina. This has now been corrected in the PDF and HTML versions of the Article
16 th IHIW: Global distribution of extended HLA haplotypes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96393/1/iji12029.pd
Next-generation HLA typing of 382 International Histocompatibility Working Group reference B-lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics Workshop
Extended molecular characterization of HLA genes in the IHWG reference B-lymphoblastoid cell lines (B-LCLs) was one of the major goals for the 17th International HLA and Immunogenetics Workshop (IHIW). Although reference B-LCLs have been examined extensively in previous workshops complete high-resolution typing was not completed for all the classical class I and class II HLA genes. To address this, we conducted a single-blind study where select panels of B-LCL genomic DNA samples were distributed to multiple laboratories for HLA genotyping by next-generation sequencing methods. Identical cell panels comprised of 24 and 346 samples were distributed and typed by at least four laboratories in order to derive accurate consensus HLA genotypes. Overall concordance rates calculated at both 2- and 4-field allele-level resolutions ranged from 90.4% to 100%. Concordance for the class I genes ranged from 91.7 to 100%, whereas concordance for class II genes was variable; the lowest observed at HLA-DRB3 (84.2%). At the maximum allele-resolution 78 B-LCLs were defined as homozygous for all 11 loci. We identified 11 novel exon polymorphisms in the entire cell panel. A comparison of the B-LCLs NGS HLA genotypes with the HLA genotypes catalogued in the IPD-IMGT/HLA Database Cell Repository, revealed an overall allele match at 68.4%. Typing discrepancies between the two datasets were mostly due to the lower-resolution historical typing methods resulting in incomplete HLA genotypes for some samples listed in the IPD-IMGT/HLA Database Cell Repository. Our approach of multiple-laboratory NGS HLA typing of the B-LCLs has provided accurate genotyping data. The data generated by the tremendous collaborative efforts of the 17th IHIW participants is useful for updating the current cell and sequence databases and will be a valuable resource for future studies
ANN multiscale model of anti-HIV Drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks
[Abstract] This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.Ministerio de EducaciĂłn, Cultura y Deportes; AGL2011-30563-C03-0
Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors
[Abstract] The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order kth (Wk). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the Wk(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated Wk(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation)
Psoriasis Patients Are Enriched for Genetic Variants That Protect against HIV-1 Disease
An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Open data from the third observing run of LIGO, Virgo, KAGRA and GEO
The global network of gravitational-wave observatories now includes five
detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600.
These detectors collected data during their third observing run, O3, composed
of three phases: O3a starting in April of 2019 and lasting six months, O3b
starting in November of 2019 and lasting five months, and O3GK starting in
April of 2020 and lasting 2 weeks. In this paper we describe these data and
various other science products that can be freely accessed through the
Gravitational Wave Open Science Center at https://gwosc.org. The main dataset,
consisting of the gravitational-wave strain time series that contains the
astrophysical signals, is released together with supporting data useful for
their analysis and documentation, tutorials, as well as analysis software
packages.Comment: 27 pages, 3 figure
- âŠ