58 research outputs found

    Role of the human concentrative nucleoside transporter (hCNT1) in the cytotoxic action of 5[Prime]-deoxy-5-fluorouridine, an active intermediate metabolite of capecitabine, a novel oral anticancer drug.

    Get PDF
    We attempt to identify the plasma membrane transporter involved in the uptake of 5'-deoxy-5-fluorouridine (5'-DFUR), an intermediate metabolite of capecitabine. This novel oral fluoropyrimidine is used in cancer treatments and is a direct precursor of the cytostatic agent 5'-fluorouracil. We also examine the role of the transporter in 5'-DFUR cytotoxicity. The human concentrative nucleoside transporter (hCNT1) was cloned from human fetal liver and expressed in Xenopus laevis oocytes. The two-electrode voltage-clamp technique was used to demonstrate that 5'-DFUR, but not capecitabine or 5'-FU, is an hCNT1 substrate. Then, hCNT1 was heterologously expressed in the mammalian cell line Chinese hamster ovary-K1. Functional expression was demonstrated by monitoring transport of radiolabeled substrates and by using a monospecific polyclonal antibody generated against the transporter. hCNT1-expressing cells were more sensitive to 5'-DFUR than vector-transfected or wild-type cells. The sensitivity of the three cell types to other agents such as cisplatin or 5'-FU was identical. In conclusion, this study shows that 1) the pharmacological profile of a nucleoside transporter can be determined by an electrophysiological approach; 2) the hCNT1 transporter is involved in 5'-DFUR uptake; and 3) hCNT1 expression may increase cell sensitivity to 5'-DFUR treatment. This study also reports for the first time the generation of an antibody against hCNT1, which may be useful in the elucidation of the relationship between hCNT1 expression and tumor response to capecitabine treatmen

    Succinate Pathway in Head and Neck Squamous Cell Carcinoma: Potential as a Diagnostic and Prognostic Marker

    Get PDF
    Simple Summary: Emerging evidence points to succinate as an important oncometabolite in cancer development; however, the contribution of the succinate-SUCNR1 axis to cancer progression remains unclear. Head and neck squamous cell carcinoma (HNSCC) is associated with disease and treatmentrelated morbidity so there is an urgent need for innovation in treatment and diagnosis practices. Our aim was to evaluate the potential of the succinate-related pathway as a diagnostic and prognostic biomarker in HNSCC. The circulating succinate levels are increased in HNSCC, being a potential noninvasive biomarker for HNSCC diagnosis. Moreover, the succinate receptor (SUCNR1) and genes related to succinate metabolism, which are predominantly expressed in the tumoral mucosa as compared with healthy tissue, are positively associated with plasma succinate. Remarkably, we found that SUCNR1 and SDHA expression levels predict prognosis

    Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease

    Get PDF
    Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with nonalcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Adipose Tissue and Serum CCDC80 in Obesity and Its Association with Related Metabolic Disease

    No full text
    Abstract Coiled-coil domain-containing 80 (CCDC80) is an adipocyte-secreted protein that modulates glucose homeostasis in response to diet-induced obesity in mice. The objective of this study was to analyze the link between human CCDC80 and obesity. CCDC80 protein expression was assessed in paired visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from 10 patients (body mass index range 22.4–38.8 kg/m2). Circulating CCDC80 levels were quantified in serum samples from two independent cross-sectional cohorts comprising 33 lean and 15 obese (cohort 1) and 32 morbidly obese (cohort 2) male patients. Insulin sensitivity, insulin secretion and blood neutrophil count were quantified in serum samples from both cohorts. Additionally, circulating free insulin-like growth factor (IGF)-1 levels and oral glucose tolerance tests were assessed in cohort 1, whereas C-reactive protein levels and degree of atherosclerosis and hepatic steatosis were studied in cohort 2. In lean patients, total CCDC80 protein content assessed by immunoblotting was lower in VAT than in SAT. In obese patients, CCDC80 was increased in VAT (P < 0.05) but equivalent in SAT compared with lean counterparts. In cohort 1, serum CCDC80 correlated negatively with the acute insulin response to glucose and IGF-1 levels and positively with blood neutrophil count independent of BMI, but not with insulin sensitivity. In cohort 2, serum CCDC80 was positively linked to the inflammatory biomarker C-reactive protein (r = 0.46; P = 0.009), atherosclerosis (carotid intima-media thickness, r = 0.62; P < 0.001) and hepatic steatosis (analysis of variance P = 0.025). Overall, these results suggest for the first time that CCDC80 may be a component of the obesity-altered secretome in VAT and could act as an adipokine whose circulant levels are linked to glucose tolerance derangements and related to inflammation-associated chronic complications
    • 

    corecore