13,444 research outputs found

    Quantum spin Hall phase in multilayer graphene

    Get PDF
    The so called quantum spin Hall phase is a topologically non trivial insulating phase that is predicted to appear in graphene and graphene-like systems. In this work we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four orbital tight-binding model that includes the full atomic spin-orbit coupling and we calculate the Z2Z_{2} topological invariant of the bulk states as well as the edge states of semi-infinite crystals with armchair termination. For homogeneous multilayers we find that even when the spin-orbit interaction opens a gap for all the possible stackings, only those with odd number of layers host gapless edge states while those with even number of layers are trivial insulators. For the heterostructures where graphene is encapsulated by trivial insulators, it turns out that the interlayer coupling is able to induce a topological gap whose size is controlled by the spin-orbit coupling of the encapsulating materials, indicating that the quantum spin Hall phase can be induced by proximity to trivial insulators.Comment: 7 pages, 6 figure

    Real space mapping of topological invariants using artificial neural networks

    Get PDF
    Topological invariants allow to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wavefunctions under twisted boundary conditions. However, those procedures do not allow to calculate a topological invariant by evaluating the system locally, and thus require information about the wavefunctions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a 1-D topological superconductor and a 2-D quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the Kernel Polynomial Method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.Comment: 9 pages, 6 figure

    Stressed-Oxidation Lifetime of Different SiC Fiber, CVI Matrix SiC Minicomposites in Air

    Get PDF
    The stressed-oxidation lifetime properties of several minicomposites composed of single fiber tows with a CVI SiC matrix were compared. The minicomposites were made up of Nicalon(Tm) and Hi-Nicalon(Tm) SiC fibers with carbon or BN interphases. Constant load stress-rupture tests were performed between 600 and 13000 C in air for all of the minicomposite systems. Cyclic load testing was performed on the Hi-Nicalon minicomposite systems. The factors controlling the different lifetime behaviors: fiber rupture properties, interphase oxidation, fiber degradation, and fiber-matrix bonding, are discussed in light of different minicomposite constituents. All of the systems were subject to intermediate temperature embrittlement. The Hi-Nicalon fiber, BN interphase system, performed the best for constant load conditions. For cyclic load conditions, both the BN- interphase and C-interphase minicomposites displayed poor, but different failure behavior

    Exploración posturográfica de pacientes simuladores

    Get PDF
    Introduction: An aphysiological pattern in computerized dynamic posturography (CDP) may be produced by numerous causes. We analyze the results obtained in this test by a group of malingering patients. Patients and method: This study analyzes a particular group of 7 malingerers, ie patients simulating a false and unreal equilibrium disorder, without any a priori awareness of the gain expected from a pathological report. The condition can only be identified with the very complex postural disorder known as “continuous imbalance.” We analyze the results of the dynamic posturography test following the diagnostic criteria described by other authors. Results: Of the criteria analyzed, we found Cevette’s to be the most frequently positive for our study group. Conclusions: The wide diversity in the criteria used makes it necessary to apply them together, assuming a high level of suspicion and great care in the diagnostic process

    Loop bounds on non-standard neutrino interactions

    Full text link
    We reconsider the bounds on non-standard neutrino interactions with matter which can be derived by constraining the four-charged-lepton operators induced at the loop level. We find that these bounds are model dependent. Naturalness arguments can lead to much stronger constraints than those presented in previous studies, while no completely model-independent bounds can be derived. We will illustrate how large loop-contributions to four-charged-lepton operators are induced within a particular model that realizes gauge invariant non-standard interactions and discuss conditions to avoid these bounds. These considerations mainly affect the O(104)\mathcal O(10^{-4}) constraint on the non-standard coupling strength \eps_{e\mu}, which is lost. The only model-independent constraints that can be derived are O(101)\mathcal O(10^{-1}). However, significant cancellations are required in order to saturate this bound.Comment: Minor changes, version to be published in JHEP. 17 pages, 3 Axodraw figures, REVTeX

    The physics potential of a reactor neutrino experiment with Skipper CCDs: Measuring the weak mixing angle

    Get PDF
    We analyze in detail the physics potential of an experiment like the one recently proposed by the vIOLETA collaboration: a kilogram-scale Skipper CCD detector deployed 12 meters away from a commercial nuclear reactor core. This experiment would be able to detect coherent elastic neutrino nucleus scattering from reactor neutrinos, capitalizing on the exceptionally low ionization energy threshold of Skipper CCDs. To estimate the physics reach, we elect the measurement of the weak mixing angle as a case study. We choose a realistic benchmark experimental setup and perform variations on this benchmark to understand the role of quenching factor and its systematic uncertainties,background rate and spectral shape, total exposure, and reactor antineutrino flux uncertainty. We take full advantage of the reactor flux measurement of the Daya Bay collaboration to perform a data driven analysis which is, up to a certain extent, independent of the theoretical uncertainties on the reactor antineutrino flux. We show that, under reasonable assumptions, this experimental setup may provide a competitive measurement of the weak mixing angle at few MeV scale with neutrino-nucleus scattering.Comment: 11 pages, 6 figure

    Influence of conservation tillage and soil water content on crop yield in dryland compacted alfisol of Central Chile

    Get PDF
    Chilean dryland areas of the Mediterranean climate region are characterized by highly degraded and compacted soils, which require the use of conservation tillage systems to mitigate water erosion as well as to improve soil water storage. An oat (Avena sativa L. cv. Supernova-INIA) - wheat (Triticum aestivum L. cv. Pandora-INIA) crop rotation was established under the following conservation systems: no tillage (Nt), Nt + contour plowing (Nt+Cp), Nt + barrier hedge (Nt+Bh), and Nt + subsoiling (Nt+Sb), compared to conventional tillage (Ct) to evaluate their influence on soil water content (SWC) in the profile (10 to 110 cm depth), the soil compaction and their interaction with the crop yield. Experimental plots were established in 2007 and lasted 3 yr till 2009 in a compacted Alfisol. At the end of the growing seasons, SWC was reduced by 44 to 51% in conservation tillage systems and 60% in Ct. Soil water content had a significant (p < 0.05) interaction with tillage system and depth; Nt+Sb showed lower SWC between 10 to 30 cm, but higher and similar to the rest between 50 to 110 cm except for Ct. Although, SWC was higher in conservation tillage systems, the high values on soil compaction affected yield. No tillage + subsoiling reduced soil compaction and had a significant increment of grain yield (similar to Ct in seasons 2008 and 2009). These findings show us that the choice of conservation tillage in compacted soils of the Mediterranean region needs to improve soil structure to obtain higher yields and increment SWC
    corecore