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Quantum spin Hall phase in multilayer graphene
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The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear
in graphene and graphenelike systems. In this paper we address the question of whether this topological property
persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures
where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital
tight-binding model that includes full atomic spin-orbit coupling and we calculate the Z2 topological invariant
of the bulk states as well as the edge states of semi-infinite crystals with armchair termination. For homogeneous
multilayers we find that even when the spin-orbit interaction opens a gap for all possible stackings, only those with
an odd number of layers host gapless edge states while those with an even number of layers are trivial insulators.
For heterostructures where graphene is encapsulated by trivial insulators, it turns out that interlayer coupling is
able to induce a topological gap whose size is controlled by the spin-orbit coupling of the encapsulating materials,
indicating that the quantum spin Hall phase can be induced by proximity to trivial insulators.
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I. INTRODUCTION

In their seminal papers [1], Kane and Mele established
the existence of two fundamentally different types of band
insulators with time reversal symmetry in two dimensions
(2D), dubbed trivial and topological. Remarkably, it was
predicted that monolayer graphene would be topological,
giving rise to protected chiral gapless edge states. Importantly,
this opened a new venue in condensed matter physics, the
quest for searching and designing topological states in two-
dimensional systems.

The nature of the topological state in graphene comes
from intrinsic spin-orbit coupling (SOC). In particular, SOC
will open gaps of opposite signs at the two Dirac points, in
contrast to a trivial gap where a staggered potential opens
in the honeycomb lattice, with the same sign at the two
valleys. This twisting of wave functions in reciprocal space
leads to the appearance of in-gap states at the boundaries
of the material. Subsequent work [2–4] found that the size
of the SOC gap in graphene was very small, and attention
was shifted to other systems, such as CdTe/HgTe quantum
wells [5], in which the quantum spin Hall (QSH) phase was
found [6], as well as to bulk systems, for which the notion of
topologically nontrivial insulators was extended. Experimental
evidence for the quantum spin Hall phase has also been found
in other systems, such as Bi(111) atomically thin layers [7,8]
and InSb/GaSb quantum wells [9,10].

Multilayers of two-dimensional materials are also potential
candidates to sustain topological states. In particular, their
appeal comes from the tunability of stacking different numbers
of layers, or even different materials. In the present work we
will focus on the study of a particular type of multilayer system,
whose basic building blocks are graphenelike systems. We will
study mainly two families of multilayers. First, we consider
multilayered systems formed by graphenelike insulators using
the SOC as a free parameter, so the main concepts should
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be suitable for systems such as graphene, silicene [11–13],
germanene [14], or stanene [15] (in fact, our methods make
it easy to extended this kind of analysis to the case of
bismuth [7,8,16] and metal-organic frameworks [17–23]).
Second, stacks are formed by a layer of graphene encapsulated
by some trivial insulator with a strong SOC.

From a practical point of view, several reasons motivate
this work. First, there is a generic interest in the possibility
of engineering the electronic properties of two-dimensional
crystals, such as graphene, h-BN, and transition metal
dichalcogenides, by combining them into multilayers [24–26].
Stacking monolayers of the same type is also a very interesting
and widely studied possibility.

Our second motivation is to study the behavior of the topo-
logical gap as we increase the number of layers in the system.
In the case of graphene, it is well known that key electronic
properties, such as the pattern of Landau levels and the density
of states at the Dirac point, are drastically modified for bi-
layer [27] and trilayer graphene [28–32]. Recent experimental
work shows that some sort of magnetic order can occur, even
at B = 0 in bilayers [33,34], trilayers [35], and even tetralay-
ers [36]. These last trivial symmetry breaking states will com-
pete with the potential topological states studied in our work.

A third motivation comes from recent experiments [37]
that report a very large enhancement of the spin Hall effect for
graphene deposited on top of WS2, as a trivial semiconductor
with a quite large SOC. This inspires the calculation for
graphene placed between two insulators with a trivial band gap,
large SOC, and broken inversion symmetry, to mimic the prop-
erties of WS2 and related transition metal dichalcogenides.

Furthermore, we have also a formal motivation. It is not
obvious a priori that the original second-neighbor hopping
Hamiltonian [1] can be applied to multilayer graphene [38].
In monolayer graphene the pz orbitals are strictly decoupled
from the s,px,py orbitals, due to mirror symmetry with respect
to the plane. In the monolayer, SOC mixes pz with px and py

orbitals of opposite spin and, when treated perturbatively, leads
to an effective Hamiltonian [1] with a spin-dependent effective
second-neighbor hopping between pz orbitals that conserves
Sz. In multilayer graphene this is no longer true, since electrons
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in a pz orbital in one layer can hop to the s orbital of atoms in
the next layer. When SOC is added to the model, we expect that
this s-pz mixing naturally leads to spin-mixing terms in the
Hamiltonian, which is indeed the case [39]. The presence of
this spin-flip channel interaction casts doubt on the validity of
the spin-conserving Kane-Mele model for multilayers [40,41]
and motivates our choice of the standard [2,42–46] four-orbital
tight-binding calculations.

The rest of this work is organized as follows. In Sec. II
we briefly review the tight-binding model and the procedures
to determine the existence of a QSH phase applied to the
homogeneous case, studying the relation between the inter-
layer coupling and the topological properties of the system.
In Sec. III the same methodology is applied to the case of
a heterogeneous structure, graphene encapsulated by a trivial
insulator, finding that topological properties can be induced
even by trivial neighboring layers. Finally, in Sec. IV we
summarize our findings.

II. HOMOGENEOUS MULTILAYERS

Monolayer graphene consists of a triangular lattice with
two atoms per unit cell that leads, in reciprocal space, to a
hexagonal Brillouin zone that hosts Dirac cones in its corners.
When N layers are considered, the crystalline structure
remains the same, only there will be 2N atoms per unit cell. We
shall only use the so-called Bernal stacking, shown in Fig. 1,
which is the ground state configuration, according to both
density functional theory (DFT) calculations and experimental
evidence [47–49]. In Bernal stacked materials an atom from
the sublattice B(A) sits on top of an atom belonging to the other
sublattice A(B). For N = 2 there is only one way to achieve
this, but for N > 2 there are different possible stacking orders.
In Fig. 1 we show the different possibilities for N � 4, with a
self-evident notation.

A. Model

We describe the multilayers with the following tight-
binding Hamiltonian,

H = HML + ηHinter + λ �L · �S, (1)

FIG. 1. (Color online) (a) Crystal structure of a bilayer graphene
system with a highlighted unit cell. Different colors for each layer
are used to distinguish the two layers. In the inset the first Brillouin
zone is depicted with the high symmetry points and the time reversal
invariant momenta colored in red. (b) Side view of the unit cells
for all the different stackings studied. For stackings with inversion
symmetry, the inversion center is shown at the crossing point of the
dashed lines. For both panels, red and blue denote sublattices.

where HML and Hinter account for the intralayer and interlayer
hoppings, respectively, and the last term is the intra-atomic
SOC. Our tight-binding model is based on four atomic orbitals,
s, px , py , and pz. Both the intralayer and interlayer hoppings
are described within the Slater-Koster formalism [50]. The
intralayer hopping parameters are taken from Ref. [51]. In
order to study the effect of interlayer coupling, the interlayer
terms are scaled by a dimensionless parameter η. When η = 1,
the ratio between interlayer and intralayer Vppπ in graphene
is taken as [52] 0.13. Unless otherwise stated, in all our
calculations we have η = 1. Within this model, the dimension
of the Hilbert space for the minimal unit cell of a crystal with
N layers is 4 × 2 × 2 × N = 16N (four orbitals per atom, two
atoms per layer, plus two possible spin orientations).

Without SOC, this model reproduces the very well known
band structure of graphene (N = 1) and multilayer graphene
N > 1, which portrays these systems as zero-gap semicon-
ductors. Within this model, SOC is known to open a gap
in the monolayer [2] as well as in the bilayer [29,38,39].
In the case of monolayer graphene, the gap is known to be
topological. Within this model, the computed value of the
gap 1.46 μeV when we take a realistic value of the atomic
spin-orbit coupling, λ = 10 meV. This gap is much smaller
than the ones obtained with accurate density functional theory
(DFT) calculations, in the range of 30 μeV [29]. The reason
for the discrepancy turns out to be that the major contribution
to the SOC gap at the Dirac point comes from the coupling
to the higher energy d bands [29]. The latter is a simple
consequence of the fact that SOC opens a gap in second
order in the coupling in the Dirac points when projected
over the p band. In comparison, SOC acts as first order
when considering channels involving the d band. Nevertheless,
interlayer hopping may open a first-order spin-flipping channel
in the p manifold, becoming of the same order as the intrinsic
spin-conserving d-level contribution. These last processes
would be the ones missing in the multilayer Kane-Mele model,
and should be added for completeness. In our case, for the sake
of simplicity, we will focus on the spin-flipping channel, and
use a four-orbital tight-binding model considering λ as a free
parameter. Future work shall focus on the effect of the d levels
in multilayer graphene, which will not be addressed here.

The effect of SOC on the band structure of the multilayers
can be summarized by the following points:

1. SOC opens up a gap for all the N stacked layers
considered, reproducing the existing results [39] for the case of
N = 2. Notice that in the case of ABA and ABCB stackings,
the system remains gapless up to a critical value of λ. This
peculiarity is related to the nonuniform evolution of the SO
splitting of the linear and nonlinear bands, as shown in Fig. 2.

2. The scaling of the gap with λ is very similar for the
monolayer and N = 2,3,4 multilayers, as shown in Fig. 2.
Therefore, it is expected that, within this model, the gap opened
by the intrinsic SOC might be as small in multilayers as it is
in monolayers.

3. The magnitude of the band gap is insensitive to interlayer
coupling. This result is somewhat surprising, since, together
with atomic SOC, the interlayer coupling opens a spin-flip
channel that is otherwise missing in the monolayer case.
For the AB bilayer, this can be understood considering the
Hamiltonian at the Dirac point, for a given spin flavor. In the
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FIG. 2. (Color online) In (a) the band structure close to the K point is shown for all possible stackings of multilayer graphene with
N = 2,3,4. Only when λ �= 0 (red line) is a gap opened at the Dirac points. Note that for ABA and ABCB stackings there are linear bands
when λ = 0 that, when the SOC is switched on, cause a smaller gap than in the other cases. In (b) the dependence of the gap with the SOC λ is
shown. The anomalous behavior for the ABA and ABCB stackings is just due to the linear bands mentioned before.

basis {A1,B1,A2,B2} the low energy Hamiltonian is given by

H (K) =

⎛
⎜⎜⎜⎝

�/2 0 0 0

0 −�/2 ηt 0

0 ηt† �/2 0

0 0 0 −�/2

⎞
⎟⎟⎟⎠ , (2)

where � is the SO gap. When η = 0, this Hamiltonian repre-
sents two decoupled monolayers. For finite η the eigenvalues
are E1

± = ±�/2 and E2
± = ±

√
(ηt)2 + (�/2)2. Since ηt �

�, the gap is still controlled by the E1 couple and is thereby
identical to that of the decoupled monolayers. As a result,
switching on the interlayer coupling does not close the SOC
gap of the monolayer, as shown in Fig. 2. As a consequence,
the ground state of two decoupled (η = 0) monolayers can
be adiabatically connected to the ground state of the bilayer
(η = 1).

The last observation leads to the following result: Odd
N stacked graphene will be quantum spin Hall insulators
(QSHIs), whereas even N will not. More precisely, for a system
of N decoupled monolayers, the Z2 invariant is

Z2(N ) = [Z2(1)]N. (3)

Since the gap opened by λ remains unaffected when switching
on the interlayer coupling η, the value of Z2 for graphenelike
multilayers is also given by Eq. (3). We have verified that
this qualitative behavior remains unchanged when d channels
are included in the picture by performing all-electron DFT
calculations [53]. In the realistic low λ limit, the gap is
controlled by the linear contribution in λ, namely, the d

channel. For large SO, the p channel that is quadratic in
λ becomes dominant, which corresponds to the situation in
which the gap opening is properly captured by the Slater-
Koster model. Thus, by artificially increasing λ in a DFT
calculation, it is possible to move from a d-dominated to a

p-dominated SO gap. We have obtained that both limits are
adiabatically connected without the gap closing, so that the
topological properties in the low λ limit are the same as in the
large λ limit.

In the following we verify Eq. (3) by using two different
strategies. In the case of inversion symmetric structures, we
compute the Z2 invariant. In all cases, we compute the edge
states and check whether or not they fill the gap. Independently
of how the topological character is obtained, Eq. (3) holds in
all the cases.

B. Calculation of the Z2 invariant

Using the method developed by Fu and Kane in 2007 [54]
for systems with inversion symmetry, it is possible to determine
easily its topological character (the Z2 invariant) by calculating
the parity of the occupied Bloch wave functions at the time
reversal invariant momenta (TRIMs),

δi =
N∏

m=1

ξ2m(�i), (−1)ν =
∏

i

δi , (4)

where ξ2m is the parity eigenvalue of the 2mth occupied state
at the TRIM �i = {�,M1,M2,M3}. Using this method, the
topological character of a system will be determined just by
the quantity (−1)ν , resulting in (−1)ν = +1 meaning trivial
topology and (−1)ν = −1 meaning nontrivial topology. The
calculation for the systems with inversion symmetry yields the
following results:

A AB ABC ABAB ABCD

M1 + + + + +
M2 + + + + +
M3 + + + + +
� − + − + +
(−1)ν − + − + +
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FIG. 3. (Color online) Scheme of the mapping between a semi-
infinite crystal and a semi-infinite chain. The coupling between each
linear chain (with k‖ well defined) is introduced by means of a self-
energy 
R .

This guarantees that A and ABC crystals are topological
but the bilayers and tetralayers (with inversion symmetry) are
not. For systems without inversion symmetry, the calculation
of the Z2 invariant requires a different approach [55–57] that
requires a line integral of the Berry curvature over a contour
in the Brillouin zone. Instead, we compute the edge states

for these systems and invoke the bulk-edge correspondence to
address the topological nature of those systems.

C. Edge states

To confirm Eq. (3) even for systems without inversion
symmetry, we look for the presence of gapless edge states.
We consider armchair-terminated semi-infinite crystals. Using
translation invariance along the direction parallel to the edge,
we block-diagonalize the Hamiltonian of the semi-infinite 2D
crystal in terms of a collection of k‖-dependent semi-infinite
one-dimensional (1D) Hamiltonians, as indicated in Fig. 3. The
1D Hamiltonian describes unit cells with 4N atoms, where N

stands for the number of graphene layers. The intracell terms
are denoted by H0(k‖) and the intercell hoppings by V (k‖).

The surface Green’s function of this block-tridiagonal semi-
infinite matrix can be written as

Gedge(E,k‖) = [E + iε − H0(k‖) − 
R(k‖) − 
H (k‖)]−1,

(5)

where 
R(k‖) is a self-energy that accounts for the coupling
to the semi-infinite crystal, 
H (k‖) is the self-energy due to its
interaction with the H atoms included to get rid of the dangling
bonds, and ε is a small analytic continuation.

The self-energy 
R can be calculated employing a recursive
Green’s function method that leads to the following coupled

FIG. 4. (Color online) For each structure, the bulk and edge density of states (left and right panel, respectively). Gapless edge states appear
only when an odd number of layers is considered independently of the stacking used.
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equations:


R(E,k‖) = VR(k‖)gR(E,k‖)V †
R(k‖),

(6)
gR(E,k‖) = [E − H0(k‖) − 
R(E,k‖)]−1.

The 
H (k‖) is calculated just as an additional iteration to the
self-consistent calculation with the appropriate value for the
hoppings C − H .

For a given k‖ we compute the density of states using

ρ(E,k‖) = − 1

π
Im[Gedge(E,k‖)]. (7)

Using a similar approach, we can also obtain the bulk density
of states by calculating the bulk Green’s function by recursion.

In Fig. 4 we show the density of states for both bulk and
edge for all the stackings as a contour plot in the k‖,E plane.
For each stacking the left panel shows the bulk density of
states, which are gapped for all the stackings and the right
panel shows the edge states. The calculations are done for a
rather large value of λ = 2 eV. The first thing to notice is that,
for such large values of λ, all the structures have edge states.
However, only in the case of odd N , shown in the left column,
the in-gap states are gapless. This is a necessary condition in
order to have a QSHI. In contrast, all systems with even N

have edge states with a gap. Thereby, they are definitely not
in the QSH phase, validating Eq. (3). Therefore, we conclude
that odd N graphene stacks are QSHIs and even N are trivial
insulators. In all cases, the gap opened by SOC is quite small.

III. HETEROGENEOUS MULTILAYERS

In the previous section we have seen that for homogeneous
multilayers the gap opened by SOC has the same magnitude as
that for the monolayer. Thereby, homogeneous multilayers of
graphene would not improve the prospects for the observation
of the QSH phase compared to the monolayer. We thus explore
the case of a heterogeneous multilayer. This is motivated
in part by recent experiments [37] that seem to indicate
an enhancement of the SOC interaction in graphene due to
proximity to WS2, a trivial semiconductor with quite large
SOC and no inversion symmetry. There has also been plenty
of work studying the enhancement of the SOC interaction in
graphene due to proximity to heavy metals [58]. However, it
would be much more interesting if graphene could be driven
into a QSH phase by proximity to an insulator, so that the only
conducting channels would be only at the edges of graphene.

Density functional calculations show [59] that a topological
band gap opens in graphene on top of both WS2 and
WSe2, two widely studied two-dimensional transition metal
dichalcogenides (TMDs). The magnitude of this gap is in the
range of a few meV, i.e., two or three orders of magnitude
larger than the intrinsic SOC gap.

Here we propose a toy model to understand the opening of a
nontrivial gap due to proximity to a trivial insulator with strong
spin-orbit coupling. For that matter, we take graphene encap-
sulated between two monolayers of a trivial semiconductor
with strong SOC and broken inversion symmetry. Specifically,
the structure of these adjacent monolayers is that of a BN-like
crystal [see Fig. 5(a)]. The choice of stacking is such that,

FIG. 5. (Color online) (a) shows the structure of the heterostruc-
ture considered. (b)–(d) show the dependence of the induced gap in
graphene due to the proximity of the encapsulating layers. In (b) it
can be seen that the gap is proportional to λ2, and this estimation gets
better as the gap of the insulating layers increases. (b) shows how the
interlayer coupling η produces the expected effect, since for a small
interlayer coupling the induced gap is small but it grows quickly as
η increases. (c) shows the dependence of the induced gap with a
sublattice imbalance.

globally, the structure has inversion symmetry. Otherwise, a
trivial band gap would be opened by proximity [24].

The BN-like crystal is described with the same interatomic
Slater-Koster parameters as graphene, but very different on-
site parameters. In particular, we assume a large SOC λ and a
staggered potential ±m that breaks the inversion symmetry
of the top and bottom layers. Since we are interested in
the proximity effect, we turn off the atomic SOC of the
graphene layer. As in the case of the homogeneous multilayers,
the interlayer coupling is characterized by the dimensionless
parameter η. In this case we impose zero SOC for the graphene
layer, in order to study the proximity effect. For η = 0 the
bands of this system would be the superposition of those of
the top and bottom insulators, with gap 2m, and the bands of
graphene, whose Dirac cones would lie inside the gap. Broadly
speaking, this picture remains the same as when the interlayer
coupling is turned on. Interestingly, a nontrivial gap � opens in
the Dirac cones only when η �= 0 and λ �= 0. We have verified
that this gap satisfies the scaling

� ∝ λη2

m2
(8)

in the limit of small λ, η, and m−1. This result implies that
graphene can borrow SOC from a neighboring trivial insulator
layer via interlayer coupling. Using the method of TRIM we
have verified that this insulator has Z2 = (−1)ν = −1, and is
therefore topologically nontrivial.
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The magnitude of the proximity effect away from the weak
coupling limit of Eq. (8) is shown in Fig. 5. We study the
dependence of the proximity gap � as a function of both
the SOC λ and the interlayer coupling η for two values
of the encapsulating layer staggered potential m. It is apparent
that, taking m = 2.0 eV (a trivial gap ∼1.5 eV) and λ �
0.25 eV, values in line with those of 2D TMDs, the proximity
gap is in the order of 1 meV, similar to the DFT results.
Therefore, our model provides a reasonable justification of
the DFT computations, which are certainly more complete.

Our toy model does not capture some probably important
features of real heterogeneous multilayers. For instance, the
interlayer interaction could break inversion symmetry which
is expected to open a trivial gap. In addition, the geometry of
our encapsulating layers was chosen to minimize the size of
the unit cell, rather than to describe a real material. In general,
the coupling of graphene to other 2D crystals will imply a new
length scale, given by the size of the new unit cell. In this
setup, the inversion symmetry breaking could average out.

IV. CONCLUSIONS

We have studied the quantum spin Hall phase in multilayer
graphene and in graphene encapsulated by a trivial semicon-

ductor. In the case of multilayer graphene, we find that only
stacks with an odd number of layers are quantum spin Hall
insulators. However, the size of the gap is the same as that
for a monolayer, and thereby most likely is too small to be
detected experimentally. In contrast, we propose a toy model
for graphene encapsulated between two semiconducting layers
with strong SOC and a trivial gap. Our model shows that a
nontrivial gap can be opened in graphene whose magnitude is
controlled by the atomic spin-orbit coupling of the adjacent
layers. Our model provides a qualitative understanding of
recent DFT calculations [58] as well as recent experimental
work [37] and shows a promising route to observe the quantum
spin Hall phase in graphene.
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