2,680 research outputs found
Sulfation pathways during neurodevelopment
Sulfate is an important nutrient that modulates a diverse range of molecular and cellular functions in mammalian physiology. Over the past 2 decades, animal studies have linked numerous sulfate maintenance genes with neurological phenotypes, including seizures, impaired neurodevelopment, and behavioral abnormalities. Despite sulfation pathways being highly conserved between humans and animals, less than one third of all known sulfate maintenance genes are clinically reportable. In this review, we curated the temporal and spatial expression of 91 sulfate maintenance genes in human fetal brain from 4 to 17 weeks post conception using the online Human Developmental Biology Resource Expression. In addition, we performed a systematic search of PubMed and Embase, identifying those sulfate maintenance genes linked to atypical neurological phenotypes in humans and animals. Those findings, together with a search of the Online Mendelian Inheritance in Man database, identified a total of 18 candidate neurological dysfunction genes that are not yet considered in clinical settings. Collectively, this article provides an overview of sulfate biology genes to inform future investigations of perturbed sulfate homeostasis associated with neurological conditions
Genetic Consideration of Schizotypal Traits: A Review
Schizotypal traits are of interest and importance in their own right and also have theoretical and clinical associations with schizophrenia. These traits comprise attenuated psychotic symptoms, social withdrawal, reduced cognitive capacity, and affective dysregulation. The link between schizotypal traits and psychotic disorders has long since been debated. The status of knowledge at this point is such schizotypal traits are a risk for psychotic disorders, but in and of themselves only confer liability, with other risk factors needing to be present before a transition to psychosis occurs. Investigation of schizotypal traits also has the possibility to inform clinical and research pursuits concerning those who do not make a transition to psychotic disorders. A growing body of literature has investigated the genetic underpinnings of schizotypal traits. Here, we review association, family studies and describe genetic disorders where the expression of schizotypal traits has been investigated. We conducted a thorough review of the existing literature, with multiple search engines, references, and linked articles being searched for relevance to the current review. All articles and book chapters in English were sourced and reviewed for inclusion. Family studies demonstrate that schizotypal traits are elevated with increasing genetic proximity to schizophrenia and some chromosomal regions have been associated with schizotypy. Genes associated with schizophrenia have provided the initial start point for the investigation of candidate genes for schizotypal traits; neurobiological pathways of significance have guided selection of genes of interest. Given the chromosomal regions associated with schizophrenia, some genetic disorders have also considered the expression of schizotypal traits. Genetic disorders considered all comprise a profile of cognitive deficits and over representation of psychotic disorders compared to the general population. We conclude that genetic variations associated with schizotypal traits require further investigation, perhaps with targeted phenotypes narrowed to assist in refining the clinical end point of significance
Tennis play intensity distribution and relation with aerobic fitness in competitive players
15 p.Los objetivos de este estudio fueron (1) describir la intensidad relativa del juego de tenis simulado en función del tiempo acumulado en tres zonas de intensidad metabólica y (2) determinar las relaciones entre esta distribución de intensidad de juego y la aptitud aeróbica de un grupo de jugadores competitivos. 20 jugadores masculinos de nivel avanzado a élite (ITN) realizaron una prueba de tenis de resistencia especÃfica en el campo incremental hasta el agotamiento para determinar el consumo máximo de oxÃgeno (VO2max) y los umbrales de ventilación primero y segundo (VT1, VT2). Los parámetros de ventilación y de intercambio de gases se monitorizaron utilizando un analizador de gas portátil telemétrico (K4 b2, Cosmed, Roma, Italia). Dos semanas después, los participantes jugaron un juego de tenis simulado contra un oponente de nivel similar. Las zonas de intensidad (1: baja, 2: moderada y 3: alta) fueron delimitadas por los valores individuales de VO2 correspondientes a VT1 y VT2, y se expresaron como porcentaje del VO2 máximo y la frecuencia cardÃaca. Cuando se expresó en relación con el VO 2 máx. El porcentaje de tiempo de juego en la zona 1 (77 ± 25%) fue significativamente mayor (p <0,001) que en la zona 2 (20 ± 21%) y la zona 3 (3 ± 5%). Se encontraron correlaciones positivas de moderadas a altas entre VT1, VT2 y VO2max, y el porcentaje del tiempo de juego transcurrido en la zona 1 (r = 0,68-0,75), asà como las correlaciones inversas de bajas a altas entre las variables metabólicas y el porcentaje de tiempo empleado en las zonas 2 y 3 (r = -0.49–0.75). Los jugadores con mejor aptitud aeróbica juegan a intensidades relativamente más bajas. Concluimos que los jugadores pasaron más del 75% del tiempo en su zona de baja intensidad, con menos del 25% del tiempo dedicado a intensidades moderadas a altas. La aptitud aeróbica parece determinar la intensidad metabólica que los jugadores pueden mantener durante todo el juegoS
Electrophysiological correlates of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism
The brain-derived neurotrophic factor (BDNF) protein is essential for neuronal development. Val66Met (rs6265) is a functional polymorphism at codon 66 of the BDNF gene that affects neuroplasticity and has been associated with cognition, brain structure and function. The aim of this study was to clarify the relationship between BDNF Val66Met polymorphism and neuronal oscillatory activity, using the electroencephalogram (EEG), in a normative cohort. Neurotypical (N = 92) young adults were genotyped for the BDNF Val66Met polymorphism and had eyes open resting-state EEG recorded for four minutes. Focal increases in right fronto-parietal delta, and decreases in alpha-1 and right hemispheric alpha-2 amplitudes were observed for the Met/Met genotype group compared to Val/Val and Val/Met groups. Stronger frontal topographies were demonstrated for beta-1 and beta-2 in the Val/Met group versus the Val/Val group. Findings highlight BDNF Val66Met genotypic differences in EEG spectral amplitudes, with increased cortical excitability implications for Met allele carriers
Glycine supplementation extends lifespan of male and female mice.
Diets low in methionine extend lifespan of rodents, though through unknown mechanisms. Glycine can mitigate methionine toxicity, and a small prior study has suggested that supplemental glycine could extend lifespan of Fischer 344 rats. We therefore evaluated the effects of an 8% glycine diet on lifespan and pathology of genetically heterogeneous mice in the context of the Interventions Testing Program. Elevated glycine led to a small (4%-6%) but statistically significant lifespan increase, as well as an increase in maximum lifespan, in both males (p = 0.002) and females (p \u3c 0.001). Pooling across sex, glycine increased lifespan at each of the three independent sites, with significance at p = 0.01, 0.053, and 0.03, respectively. Glycine-supplemented females were lighter than controls, but there was no effect on weight in males. End-of-life necropsies suggested that glycine-treated mice were less likely than controls to die of pulmonary adenocarcinoma (p = 0.03). Of the 40 varieties of incidental pathology evaluated in these mice, none were increased to a significant degree by the glycine-supplemented diet. In parallel analyses of the same cohort, we found no benefits from TM5441 (an inhibitor of PAI-1, the primary inhibitor of tissue and urokinase plasminogen activators), inulin (a source of soluble fiber), or aspirin at either of two doses. Our glycine results strengthen the idea that modulation of dietary amino acid levels can increase healthy lifespan in mice, and provide a foundation for further investigation of dietary effects on aging and late-life diseases
Glycine supplementation extends lifespan of male and female mice.
Diets low in methionine extend lifespan of rodents, though through unknown mechanisms. Glycine can mitigate methionine toxicity, and a small prior study has suggested that supplemental glycine could extend lifespan of Fischer 344 rats. We therefore evaluated the effects of an 8% glycine diet on lifespan and pathology of genetically heterogeneous mice in the context of the Interventions Testing Program. Elevated glycine led to a small (4%-6%) but statistically significant lifespan increase, as well as an increase in maximum lifespan, in both males (p = 0.002) and females (p \u3c 0.001). Pooling across sex, glycine increased lifespan at each of the three independent sites, with significance at p = 0.01, 0.053, and 0.03, respectively. Glycine-supplemented females were lighter than controls, but there was no effect on weight in males. End-of-life necropsies suggested that glycine-treated mice were less likely than controls to die of pulmonary adenocarcinoma (p = 0.03). Of the 40 varieties of incidental pathology evaluated in these mice, none were increased to a significant degree by the glycine-supplemented diet. In parallel analyses of the same cohort, we found no benefits from TM5441 (an inhibitor of PAI-1, the primary inhibitor of tissue and urokinase plasminogen activators), inulin (a source of soluble fiber), or aspirin at either of two doses. Our glycine results strengthen the idea that modulation of dietary amino acid levels can increase healthy lifespan in mice, and provide a foundation for further investigation of dietary effects on aging and late-life diseases
Severe childhood malaria syndromes defined by plasma proteome profiles
BACKGROUND
Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes.
METHODS AND FINDINGS
Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children.
CONCLUSIONS
We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes
Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects.
To see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3-month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug-free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, β-guanidinopropionic acid, MitoQ, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), but none of these led to a change in survival in either sex
Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects.
To see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3-month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug-free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, β-guanidinopropionic acid, MitoQ, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), but none of these led to a change in survival in either sex
- …