155 research outputs found

    Use of a hydrodynamic model for the management of water renovation in a coastal system

    Get PDF
    In this contribution we investigate the hydrodynamic response in Alfacs Bay (Ebro Delta, NW Mediterranean Sea) to different anthropogenic modifications in freshwater flows and inner bay–open sea connections. The fresh water coming from rice field irrigation contains nutrients and pesticides and therefore affects in multiple ways the productivity and water quality of the bay. The application of a nested oceanographic circulation modelling suite within the bay provides objective information to solve water quality problems that are becoming more acute due to temperature and phytoplankton concentration peaks during the summer period when seawater may exceed 28 ∘C, leading to high rates of mussel mortality and therefore a significant impact on the local economy. The effects of different management “solutions” (like a connection channel between the inner bay and open sea) are hydrodynamically modelled in order to diminish residence times (e-flushing time) and water temperatures. The modelling system, based on the Regional Ocean Modeling System (ROMS), consists of a set of nested domains using data from CMEMS-IBI for the initial and open boundary conditions (coarser domain). One full year (2014) of simulation is used to validate the results, showing low errors with sea surface temperature (SST) and good agreement with surface currents. Finally, a set of twin numerical experiments during the summer period (when the water temperature reaches 28 ∘C) is used to analyse the effects of proposed nature-based interventions. Although these actions modify water temperature in the water column, the decrease in SST is not enough to avoid high temperatures during some days and prevent eventual mussel mortality during summer in the shallowest regions. However, the proposed management actions reveal their effectiveness in diminishing water residence times along the entire bay, thus preventing the inner areas from having poor water renewal and the corresponding ecological problems.info:eu-repo/semantics/publishedVersio

    Multilayer OMIC data in medullary thyroid carcinoma identifies the STAT3 pathway as a potential therapeutic target in RETM918T tumors

    Get PDF
    Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.Results: The most distinctive methylome was observed for RETM918T-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylome and transcriptome data underscored JAK/Stat pathway involvement in RETM918T MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RETM918T-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RETM918T-positive MTC cell line, MZ-CRC-1.Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RETM918T MTCs.This work was supported by the Fondo de Investigaciones Sanitarias (FIS) project PI14/00240 and the Comunidad de Madrid (Grant S2011/BMD-2328 TIRONET) to MR. LI-P is supported by the Centro de Investigacion Biomédica en Red de Enfermedades Raras (CIBERER). VM was supported by a predoctoral fellowship from the "la Caixa"/CNIO international PhD programme. CM-C is supported by a postdoctoral fellowship from the Fundación AECC

    DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease

    Get PDF
    The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease

    Distinct DNA methylomes of newborns and centenarians

    Full text link
    Human aging cannot be fully understood in terms of the constrained genetic setting. Epigenetic drift is an alternative means of explaining age-associated alterations. To address this issue, we performed whole-genome bisulfite sequencing (WGBS) of newborn and centenarian genomes. The centenarian DNA had a lower DNA methylation content and a reduced correlation in the methylation status of neighboring cytosine--phosphate--guanine (CpGs) throughout the genome in comparison with the more homogeneously methylated newborn DNA. The more hypomethylated CpGs observed in the centenarian DNA compared with the neonate covered all genomic compartments, such as promoters, exonic, intronic, and intergenic regions. For regulatory regions, the most hypomethylated sequences in the centenarian DNA were present mainly at CpG-poor promoters and in tissue-specific genes, whereas a greater level of DNA methylation was observed in CpG island promoters. We extended the study to a larger cohort of newborn and nonagenarian samples using a 450,000 CpG-site DNA methylation microarray that reinforced the observation of more hypomethylated DNA sequences in the advanced age group. WGBS and 450,000 analyses of middle-age individuals demonstrated DNA methylomes in the crossroad between the newborn and the nonagenarian/centenarian groups. Our study constitutes a unique DNA methylation analysis of the extreme points of human life at a single-nucleotide resolution level

    Development and Validation of Hepamet Fibrosis Scoring System-a Simple, Non-invasive Test to Identify Patients With Nonalcoholic Fatty liver Disease With Advanced Fibrosis

    Get PDF
    BACKGROUND &amp; AIMS: Fibrosis affects prognoses for patients with nonalcoholic fatty liver disease (NAFLD). Several non-invasive scoring systems have aimed to identify patients at risk for advanced fibrosis, but inconclusive results and variations in features of patients (diabetes, obesity and older age) reduce their diagnostic accuracy. We sought to develop a scoring system based on serum markers to identify patients with NAFLD at risk for advanced fibrosis. METHODS: We collected data from 2452 patients with NAFLD at medical centers in Italy, France, Cuba, and China. We developed the Hepamet fibrosis scoring system using demographic, anthropometric, and laboratory test data, collected at time of liver biopsy, from a training cohort of patients from Spain (n=768) and validated the system using patients from Cuba (n=344), Italy (n=288), France (n=830), and China (n=232). Hepamet fibrosis score (HFS) were compared with those of previously developed fibrosis scoring systems (the NAFLD fibrosis score [NFS] and FIB-4). The diagnostic accuracy of the Hepamet fibrosis scoring system was assessed based on area under the receiver operating characteristic (AUROC) curve, sensitivity, specificity, diagnostic odds ratio, and positive and negative predictive values and likelihood ratios. RESULTS: Variables used to determine HFS were patient sex, age, homeostatic model assessment score, presence of diabetes, levels of aspartate aminotransferase, and albumin, and platelet counts; these were independently associated with advanced fibrosis. HFS discriminated between patients with and without advanced fibrosis with an AUROC curve value of 0.85 whereas NFS or FIB-4 did so with AUROC values of 0.80 (P=.0001). In the validation set, cut-off HFS of 0.12 and 0.47 identified patients with and without advanced fibrosis with 97.2% specificity, 74% sensitivity, a 92% negative predictive value, a 76.3% positive predictive value, a 13.22 positive likelihood ratio, and a 0.31 negative likelihood ratio. HFS were not affected by patient age, body mass index, hypertransaminasemia, or diabetes. The Hepamet fibrosis scoring system had the greatest net benefit in identifying patients who should undergo liver biopsy analysis and led to significant improvements in reclassification, reducing the number of patients with undetermined results to 20% from 30% for the FIB-4 and NFS systems (P&lt;.05). CONCLUSIONS: Using clinical and laboratory data from patients with NAFLD, we developed and validated the Hepamet fibrosis scoring system, which identified patients with advanced fibrosis with greater accuracy than the FIB-4 and NFS systems. the Hepamet system provides a greater net benefit for the decision-making process to identify patients who should undergo liver biopsy analysis

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicenter, retrospective analysis

    Get PDF
    Background: Anti-programmed death-1 (PD-1) treatment for advanced non-small-cell lung cancer (NSCLC) has improved the survival of patients. However, a substantial percentage of patients do not respond to this treatment. We examined the use of DNA methylation profiles to determine the efficacy of anti-PD-1 treatment in patients recruited with current stage IV NSCLC. Methods: In this multicentre study, we recruited adult patients from 15 hospitals in France, Spain, and Italy who had histologically proven stage IV NSCLC and had been exposed to PD-1 blockade during the course of the disease. The study structure comprised a discovery cohort to assess the correlation between epigenetic features and clinical benefit with PD-1 blockade and two validation cohorts to assess the validity of our assumptions. We first established an epigenomic profile based on a microarray DNA methylation signature (EPIMMUNE) in a discovery set of tumour samples from patients treated with nivolumab or pembrolizumab. The EPIMMUNE signature was validated in an independent set of patients. A derived DNA methylation marker was validated by a single-methylation assay in a validation cohort of patients. The main study outcomes were progression-free survival and overall survival. We used the Kaplan-Meier method to estimate progression-free and overall survival, and calculated the differences between the groups with the log-rank test. We constructed a multivariate Cox model to identify the variables independently associated with progression-free and overall survival. Findings: Between June 23, 2014, and May 18, 2017, we obtained samples from 142 patients: 34 in the discovery cohort, 47 in the EPIMMUNE validation cohort, and 61 in the derived methylation marker cohort (the T-cell differentiation factor forkhead box P1 [FOXP1]). The EPIMMUNE signature in patients with stage IV NSCLC treated with anti-PD-1 agents was associated with improved progression-free survival (hazard ratio [HR] 0·010, 95% CI 3·29 × 10 −4–0·0282; p=0·0067) and overall survival (0·080, 0·017–0·373; p=0·0012). The EPIMMUNE-positive signature was not associated with PD-L1 expression, the presence of CD8+ cells, or mutational load. EPIMMUNE-negative tumours were enriched in tumour-associated macrophages and neutrophils, cancer-associated fibroblasts, and senescent endothelial cells. The EPIMMUNE-positive signature was associated with improved progression-free survival in the EPIMMUNE validation cohort (0·330, 0·149–0·727; p=0·0064). The unmethylated status of FOXP1 was associated with improved progression-free survival (0·415, 0·209–0·802; p=0·0063) and overall survival (0·409, 0·220–0·780; p=0·0094) in the FOXP1 validation cohort. The EPIMMUNE signature and unmethylated FOXP1 were not associated with clinical benefit in lung tumours that did not receive immunotherapy. Interpretation: Our study shows that the epigenetic milieu of NSCLC tumours indicates which patients are most likely to benefit from nivolumab or pembrolizumab treatments. The methylation status of FOXP1 could be associated with validated predictive biomarkers such as PD-L1 staining and mutational load to better select patients who will experience clinical benefit with PD-1 blockade, and its predictive value should be evaluated in prospective studies

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    corecore