26 research outputs found

    A comprehensive Monte Carlo study of CT dose metrics proposed by the AAPM Reports 111 and 200

    Get PDF
    Purpose A Monte Carlo (MC) modeling of single axial and helical CT scan modes has been developed to compute single and accumulated dose distributions. The radiation emission characteristics of an MDCT scanner has been modeled and used to evaluate the dose deposition in infinitely long head and body PMMA phantoms. The simulated accumulated dose distributions determined the approach to equilibrium function, H(L). From these urn:x-wiley:00942405:media:mp15306:mp15306-math-0001 curves, dose-related information was calculated for different head and body clinical protocols. Methods The PENELOPE/penEasy package has been used to model the single axial and helical procedures and the radiation transport of photons and electrons in the phantoms. The bowtie filters, heel effect, focal-spot angle, and fan-beam geometry were incorporated. Head and body protocols with different pitch values were modeled for x-ray spectra corresponding to 80, 100, 120, and 140 kV. The analytical formulation for the single dose distributions and experimental measurements of single and accumulated dose distributions were employed to validate the MC results. The experimental dose distributions were measured with OSLDs and a thimble ion chamber inserted into PMMA phantoms. Also, the experimental values of the urn:x-wiley:00942405:media:mp15306:mp15306-math-0002 along the center and peripheral axes of the CTDI phantom served to calibrate the simulated single and accumulated dose distributions. Results The match of the simulated dose distributions with the reference data supports the correct modeling of the heel effect and the radiation transport in the phantom material reflected in the tails of the dose distributions. The validation of the x-ray source model was done comparing the CTDI ratios between simulated, measured and CTDosimetry data. The average difference of these ratios for head and body protocols between the simulated and measured data was in the range of 13-17% and between simulated and CTDosimetry data varied 10-13%. The distributions of simulated doses and those measured with the thimble ion chamber are compatible within 3%. In this study, it was demonstrated that the efficiencies of the urn:x-wiley:00942405:media:mp15306:mp15306-math-0003 measurements in head phantoms with nT = 20 mm and 120 kV are 80.6% and 87.8% at central and peripheral axes, respectively. In the body phantoms with urn:x-wiley:00942405:media:mp15306:mp15306-math-0004= 40 mm and 120 kV, the efficiencies are 56.5% and 86.2% at central and peripheral axes, respectively. In general terms, the clinical parameters such as pitch, beam intensity, and voltage affect the Deq values with the increase of the pitch decreasing the Deq and the beam intensity and the voltage increasing its value. The H(L) function does not change with the pitch values, but depends on the phantom axis (central or peripheral). Conclusions The computation of the pitch-equilibrium dose product, urn:x-wiley:00942405:media:mp15306:mp15306-math-0005, evidenced the limitations of the urn:x-wiley:00942405:media:mp15306:mp15306-math-0006 method to determine the dose delivered by a CT scanner. Therefore, quantities derived from the urn:x-wiley:00942405:media:mp15306:mp15306-math-0007 propagate this limitation. The developed MC model shows excellent compatibility with both measurements and literature quantities defined by AAPM Reports 111 and 200. These results demonstrate the robustness and versatility of the proposed modeling method

    Experimental and theoretical L-subshell ionization cross sections for 83Bi by electron impact from the L3 threshold to 100 keV

    Get PDF
    We report experimental and theoretical Bi L1, L2, and L3 subshell ionization cross sections by the impact of electrons with energies from the Bi L3 ionization threshold to 100 keV. The x-ray spectra have been acquired with two Si drift detectors placed in vacuum, which allowed us to better evaluate the peak fit procedure in the L multiplet. The Lα, Lβ, Lγ, Lℓ, and Lη x-ray production cross sections, measured with relative uncertainties ranging from 5% to 9%, and two sets of atomic relaxation parameters have been used to derive the Bi L1, L2, and L3 ionization cross sections. Although the experimental uncertainties of the subshell ionization cross sections are smaller than those of the few previous measurements, they remain large due to the uncertainties associated with the relaxation parameters. Furthermore, ionization cross sections have been calculated for the three L subshells with the subconfiguration average distorted-wave (SCADW) formalism, which includes the full two-body retarded electromagnetic interaction between the projectile and target electrons. These theoretical cross sections are 15% to 30% lower than the measured values, but the agreement is reasonable given the aforementioned high uncertainties. We have also found that the simpler distorted-wave Born approximation yields subshell ionization cross sections that match those computed with the SCADW method

    A High Dynamic Range ASIC for Time of Flight PET with monolithic crystals

    Get PDF
    The HRFlexToT is a 16-channel ASIC for SiPM anode readout designed for Positron Emission Tomography (PET) applications that features high dynamic range (>8 bits), low input impedance, common cathode connection, high speed and low power (~3.5 mW/ch). The ASIC has been manufactured using XFAB 0.18 mm CMOS technology. The main characteristics of the HRFlexToT, compared to its predecessor, are a new energy measurement readout providing a linear Time Over Threshold (ToT) with an extended dynamic range, lower power consumption and better timing response. Initial measurements show a linearity error below 3%. Single Photon Time Resolution (SPTR) measurements performed using a Hamamatsu MPPC S13360-3050CS (3x3 mm2 pixel, 50 umm cell) shows 30% improvement with respect to the previous version of the ASIC, setting this specification in the order of 141 ps FWHM and reducing 3 times power consumption. It is important to highlight that an SPTR of 141 ps FWHM is, according to the best of our knowledge, the best resolution achieved so far for this sensor. Coincidence Time Resolution (CTR) measurements are expected to be performed during 2018

    Pregnancy Outcomes and SARS-CoV-2 Infection: The Spanish Obstetric Emergency Group Study

    Get PDF
    Pregnant women who are infected with SARS-CoV-2 are at an increased risk of adverse perinatal outcomes. With this study, we aimed to better understand the relationship between maternal infection and perinatal outcomes, especially preterm births, and the underlying medical and interventionist factors. This was a prospective observational study carried out in 78 centers (Spanish Obstetric Emergency Group) with a cohort of 1347 SARS-CoV-2 PCR-positive pregnant women registered consecutively between 26 February and 5 November 2020, and a concurrent sample of PCR-negative mothers. The patients' information was collected from their medical records, and the association of SARS-CoV-2 and perinatal outcomes was evaluated by univariable and multivariate analyses. The data from 1347 SARS-CoV-2-positive pregnancies were compared with those from 1607 SARS-CoV-2-negative pregnancies. Differences were observed between both groups in premature rupture of membranes (15.5% vs. 11.1%, p < 0.001); venous thrombotic events (1.5% vs. 0.2%, p < 0.001); and severe pre-eclampsia incidence (40.6 vs. 15.6%, p = 0.001), which could have been overestimated in the infected cohort due to the shared analytical signs between this hypertensive disorder and COVID-19. In addition, more preterm deliveries were observed in infected patients (11.1% vs. 5.8%, p < 0.001) mainly due to an increase in iatrogenic preterm births. The prematurity in SARS-CoV-2-affected pregnancies results from a predisposition to end the pregnancy because of maternal disease (pneumonia and pre-eclampsia, with or without COVID-19 symptoms)

    Real-world effectiveness of caplacizumab vs the standard of care in immune thrombotic thrombocytopenic purpura

    Get PDF
    Immune thrombotic thrombocytopenic purpura (iTTP) is a thrombotic microangiopathy caused by anti-ADAMTS13 antibodies. Caplacizumab is approved for adults with an acute episode of iTTP in conjunction with plasma exchange (PEX) and immunosuppression. The objective of this study was to analyze and compare the safety and efficacy of caplacizumab vs the standard of care and assess the effect of the concomitant use of rituximab. A retrospective study from the Spanish TTP Registry of patients treated with caplacizumab vs those who did not receive it was conducted. A total of 155 patients with iTTP (77 caplacizumab, 78 no caplacizumab) were included. Patients initially treated with caplacizumab had fewer exacerbations (4.5% vs 20.5%; P <.05) and less refractoriness (4.5% vs 14.1%; P <.05) than those who were not treated. Time to clinical response was shorter when caplacizumab was used as initial treatment vs caplacizumab used after refractoriness or exacerbation. The multivariate analysis showed that its use in the first 3 days after PEX was associated with a lower number of PEX (odds ratio, 7.5; CI, 2.3-12.7; P <.05) and days of hospitalization (odds ratio, 11.2; CI, 5.6-16.9; P <.001) compared with standard therapy. There was no difference in time to clinical remission in patients treated with caplacizumab compared with the use of rituximab. No severe adverse event was described in the caplacizumab group. In summary, caplacizumab reduced exacerbations and refractoriness compared with standard of care regimens. When administered within the first 3 days after PEX, it also provided a faster clinical response, reducing hospitalization time and the need for PEX

    Real-world effectiveness of caplacizumab vs the standard of care in immune thrombotic thrombocytopenic purpura

    Get PDF
    Immune thrombotic thrombocytopenic purpura (iTTP) is a thrombotic microangiopathy caused by anti-ADAMTS13 antibodies. Caplacizumab is approved for adults with an acute episode of iTTP in conjunction with plasma exchange (PEX) and immunosuppression. The objective of this study was to analyze and compare the safety and efficacy of caplacizumab vs the standard of care and assess the effect of the concomitant use of rituximab. A retrospective study from the Spanish TTP Registry of patients treated with caplacizumab vs those who did not receive it was conducted. A total of 155 patients with iTTP (77 caplacizumab, 78 no caplacizumab) were included. Patients initially treated with caplacizumab had fewer exacerbations (4.5% vs 20.5%; P < .05) and less refractoriness (4.5% vs 14.1%; P < .05) than those who were not treated. Time to clinical response was shorter when caplacizumab was used as initial treatment vs caplacizumab used after refractoriness or exacerbation. The multivariate analysis showed that its use in the first 3 days after PEX was associated with a lower number of PEX (odds ratio, 7.5; CI, 2.3-12.7; P < .05) and days of hospitalization (odds ratio, 11.2; CI, 5.6-16.9; P < .001) compared with standard therapy. There was no difference in time to clinical remission in patients treated with caplacizumab compared with the use of rituximab. No severe adverse event was described in the caplacizumab group. In summary, caplacizumab reduced exacerbations and refractoriness compared with standard of care regimens. When administered within the first 3 days after PEX, it also provided a faster clinical response, reducing hospitalization time and the need for PEX

    Toenail zinc as a biomarker: Relationship with sources of environmental exposure and with genetic variability in MCC-Spain study

    Full text link
    Background: Toenails are commonly used as biomarkers of exposure to zinc (Zn), but there is scarce information about their relationship with sources of exposure to Zn. Objectives: To investigate the main determinants of toenail Zn, including selected sources of environmental exposure to Zn and individual genetic variability in Zn metabolism. Methods: We determined toenail Zn by inductively coupled plasma mass spectrometry in 3,448 general popu-lation controls from the MultiCase-Control study MCC-Spain. We assessed dietary and supplement Zn intake using food frequency questionnaires, residential proximity to Zn-emitting industries and residential topsoil Zn levels through interpolation methods. We constructed a polygenic score of genetic variability based on 81 single nucleotide polymorphisms in genes involved in Zn metabolism. Geometric mean ratios of toenail Zn across categories of each determinant were estimated from multivariate linear regression models on log-transformed toenail Zn. Results: Geometric mean toenail Zn was 104.1 mu g/g in men and 100.3 mu g/g in women. Geometric mean toenail Zn levels were 7 % lower (95 % confidence interval 1-13 %) in men older than 69 years and those in the upper tertile of fibre intake, and 9 % higher (3-16 %) in smoking men. Women residing within 3 km from Zn-emitting industries had 4 % higher geometric mean toenail Zn levels (0-9 %). Dietary Zn intake and polygenic score were unrelated to toenail Zn. Overall, the available determinants only explained 9.3 % of toenail Zn variability in men and 4.8 % in women. Discussion: Sociodemographic factors, lifestyle, diet, and environmental exposure explained little of the indi-vidual variability of toenail Zn in the study population. The available genetic variants related to Zn metabolism were not associated with toenail Zn
    corecore