34 research outputs found

    High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators

    Get PDF
    Highly sensitive conversion of motion into readable electrical signals is a crucial and challenging issue for nanomechanical resonators. Efficient transduction is particularly difficult to realize in devices of low dimensionality, such as beam resonators based on carbon nanotubes or silicon nanowires, where mechanical vibrations combine very high frequencies with miniscule amplitudes. Here we describe an enhanced piezoresistive transduction mechanism based on the asymmetry of the beam shape at rest. We show that this mechanism enables highly sensitive linear detection of the vibration of low-resistivity silicon beams without the need of exceptionally large piezoresistive coefficients. The general application of this effect is demonstrated by detecting multiple-order modes of silicon nanowire resonators made by either top-down or bottom-up fabrication methods. These results reveal a promising approach for practical applications of the simplest mechanical resonators, facilitating its manufacturability by very large-scale integration technologies. © 2014 Macmillan Publishers Limited. All rights reserved.This work was partially funded by the projects SNM (FP7-ICT-2011-8), FORCE-for-FUTURE (CSD2010-00024), ANEM (TEC2009-14517-C02-01), SGR-NANOFABRICACION (2009 SGR 265), SiNSoC (MAT2011-15159-E). M.S. acknowledges the FPU grant (Ref. AP2008-03849).Peer Reviewe

    Role of penetrability into a brush-coated surface in directed self-assembly of block copolymers

    Get PDF
    Altres ajuts: the ICN2 is funded by the CERCA programme/Generalitat de Catalunya.High-density and high-resolution line and space patterns on surfaces are obtained by directed self-assembly of lamella-forming block copolymers (BCPs) using wide-stripe chemical guiding patterns. When the width of the chemical pattern is larger than the half-pitch of the BCP, the interaction energy between each BCP domain and the surface is crucial to obtain the desired segregated film morphology. We investigate how the intermixing between BCPs and polymer brush molecules on the surface influences the optimal surface and interface free energies to obtain a proper BCP alignment. We have found that computational models successfully predict the experimentally obtained guided patterns if the penetrability of the brush layer is taken into account instead of a hard, impenetrable surface. Experiments on directed self-assembly of lamella-forming poly(styrene-block-methyl methacrylate) using chemical guiding patterns corroborate the models used in the simulations, where the values of the surface free energy between the BCP and the guiding and background stripes are accurately determined using an experimental method based on the characterization of contact angles in droplets formed after dewetting of homopolymer blends

    Introducing surface functionality on thermoformed polymeric films

    Get PDF
    Altres ajuts: this work has been performed within the PLASTFUN project (Planta Pilot de Peces Plàstiques amb Superficies Funcionals Avançades), within the Industries of the Future community (IDF) RIS3CAT, supported by the European Regional Development Fund (ERDF) as part of the operative frame FEDER of Catalonia 2014-2020 EC [COMRDI 16-1-0018], included in the 7th Framework Program. AF, NK and CMST acknowledge support from the CERCA Programme of the Generalitat de Catalunya.We present a fabrication process for the production of 3-dimensional micro-structured polymeric films. The microstructures are fabricated in a single step using thermal nanoimprint lithography as patterning technique. The micro-structured polymer films are then transformed into a 3D shape by means of a plug-assisted thermoforming process, while keeping the functionality of the micro-patterned areas. The preserved functionality is characterized by water contact angle measurements, while the deformation of the micro-structured topographies due to the thermoforming process is analyzed using confocal microscopy and Digital Image Correlation (DIC) techniques. This combined fabrication process represents a promising solution to complement in-mold decoration approaches, enabling the production of new functional surfaces. As the microstructures are fabricated by means of a mechanical modification of the surface, without the need of chemical treatments or coatings, the presented technique represents a promising, simple and green solution, suitable for the industrial fabrication of 3D nonplanar shaped functional surfaces

    In situ real-time characterization of block copolymer self-assembly processes by GISAXS

    Get PDF
    E-MRS Spring Meeting and Exhibit will be held in the Convention Centre of Strasbourg (France), from June 18 to 22 (2018). .--https://www.european-mrs.com/block-copolymer-self-assembly-fundamentals-and-applications-emr

    Internalization and viability studies of suspended nanowire silicon chips in HeLa Cells

    Get PDF
    Micrometer-sized silicon chips have been demonstrated to be cell-internalizable, offering the possibility of introducing in cells even smaller nanoelements for intracellular applications. On the other hand, silicon nanowires on extracellular devices have been widely studied as biosensors or drug delivery systems. Here, we propose the integration of silicon nanowires on cell-internalizable chips in order to combine the functional features of both approaches for advanced intracellular applications. As an initial fundamental study, the cellular uptake in HeLa cells of silicon 3 m 3 m nanowire-based chips with two different morphologies was investigated, and the results were compared with those of non-nanostructured silicon chips. Chip internalization without affecting cell viability was achieved in all cases; however, important cell behavior differences were observed. In particular, the first stage of cell internalization was favored by silicon nanowire interfaces with respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips as future intracellular sensors and drug delivery systems

    Extracting Block Copolymer Dynamics from GISAXS

    Get PDF
    4th. International symposium on DSA.(2018)4th. International symposium on DSA. 11-13. November, 2F Pearl Room, Sapporo Park Hotel. Japan (2018) .-http://dsasymp.org/program.htm

    Silicon Nanowire growth technologies for nanomechanical devices

    Get PDF
    Nanohilos de silicio obtenidos mediante el mecanismo de vapor-liquido-solido (VLS) ofrecen extraordinarias propiedades para aplicaciones en dispositivos nanomecánicos. Su calidad estructural (baja densidad de defectos, superficie lisa) y sus propiedades mecánicas únicas (auto-ensamblado robusto, alta rigidez y piezoresistencia gigante) junto con, recientes progresos en el control del crecimiento, prometen permitir un funcionamiento sin precedentes para una gran variedad de sistemas. Sin embargo, la fabricación generalmente está limitada a prototipos y más esfuerzos para conseguir un control simultáneo de las propiedades de los nanohilos y la posición son necesarios. Esta tesis ha sido centrada en el desarrollo de tecnologías de fabricación con alto rendimiento/ a gran escala de dispositivos basados en nanohilos de silicio que exploten sus propiedades excepcionales. Tecnologías de fabricación para el crecimiento selectivo de matrices de nanohilos de silicio y de nanohilos individuales en dispositivos funcionales han sido desarrolladas y posteriormente adaptadas para la fabricación de diversos dispositivos basados en nanohilos. En particular, el diseño, la fabricación y la caracterización de un cantilever piezoresistivo en el que el elemento de sensado está compuesto por una matriz de nanohilos ha sido demostrado. Los coeficientes piezoresistivos gigantes característicos de los nanohilos de Silicio se trasladan en un incremento en la sensibilidad mecánica comparada con dispositivos basados en silicio volumétrico. Por otro lado, se ha realizado la fabricación de resonadores nanomecánicos basados en nanohilos individuales. La caracterización de estos dispositivos demostró que los nanhilos individuales son excepcionales plataformas para el desarrollo de sensores de masa ultra sensibles y para el estudio de propiedades fundamentales de estructuras nanomecánicas.Silicon nanowires obtained via vapor-liquid-solid (VLS) mechanism offer many extraordinary properties for applications in nanomechanical devices. Their structural quality (low defect density, surface flatness) and unique mechanical properties (robust self-assembly, high stiffness, giant piezoresistance) together with, recent advances in growth control, promise to allow unprecedented performance of wide variety of systems. However, device fabrication is generally limited to prototype fabrication and more efforts to achieve simultaneous control of nanowire properties and location are needed. This thesis has been focused towards the development of high yield/ large scale fabrication technologies based on catalyst grown Si nanowire to realize devices that exploit their exceptional properties. Fabrication technologies for the selective growth of silicon nanowire arrays and single nanowire on functional devices have been developed and posteriorly adapted for the fabrication of several nanowire based devices. In particular, the design, fabrication and characterization of a piezoresistive cantilever in which the active sensor is composed of an horizontal Si nanowire array has been demonstrated. Giant piezoresistance coefficients characteristics of Si nanowires are translated into an increment in the cantilever mechanical sensitivity compared with similar bulk devices. On the other hand, the fabrication of nanomechanical resonators based on single nanowires for mass sensing applications with different transduction mechanims has been performed. The characterization of these devices proved that single nanowires are exceptional platforms to develop ultra-high sensitive mass sensors and to study fundamental properties of nanomechanical structures

    Silicon nanowire growth technologies for nanomechanical devices

    Get PDF
    Nanohilos de silicio obtenidos mediante el mecanismo de vapor-liquido-solido (VLS) ofrecen extraordinarias propiedades para aplicaciones en dispositivos nanomecánicos. Su calidad estructural (baja densidad de defectos, superficie lisa) y sus propiedades mecánicas únicas (auto-ensamblado robusto, alta rigidez y piezoresistencia gigante) junto con, recientes progresos en el control del crecimiento, prometen permitir un funcionamiento sin precedentes para una gran variedad de sistemas. Sin embargo, la fabricación generalmente está limitada a prototipos y más esfuerzos para conseguir un control simultáneo de las propiedades de los nanohilos y la posición son necesarios. Esta tesis ha sido centrada en el desarrollo de tecnologías de fabricación con alto rendimiento/ a gran escala de dispositivos basados en nanohilos de silicio que exploten sus propiedades excepcionales. Tecnologías de fabricación para el crecimiento selectivo de matrices de nanohilos de silicio y de nanohilos individuales en dispositivos funcionales han sido desarrolladas y posteriormente adaptadas para la fabricación de diversos dispositivos basados en nanohilos. En particular, el diseño, la fabricación y la caracterización de un cantilever piezoresistivo en el que el elemento de sensado está compuesto por una matriz de nanohilos ha sido demostrado. Los coeficientes piezoresistivos gigantes característicos de los nanohilos de Silicio se trasladan en un incremento en la sensibilidad mecánica comparada con dispositivos basados en silicio volumétrico. Por otro lado, se ha realizado la fabricación de resonadores nanomecánicos basados en nanohilos individuales. La caracterización de estos dispositivos demostró que los nanhilos individuales son excepcionales plataformas para el desarrollo de sensores de masa ultra sensibles y para el estudio de propiedades fundamentales de estructuras nanomecánicas.Silicon nanowires obtained via vapor-liquid-solid (VLS) mechanism offer many extraordinary properties for applications in nanomechanical devices. Their structural quality (low defect density, surface flatness) and unique mechanical properties (robust self-assembly, high stiffness, giant piezoresistance) together with, recent advances in growth control, promise to allow unprecedented performance of wide variety of systems. However, device fabrication is generally limited to prototype fabrication and more efforts to achieve simultaneous control of nanowire properties and location are needed. This thesis has been focused towards the development of high yield/ large scale fabrication technologies based on catalyst grown Si nanowire to realize devices that exploit their exceptional properties. Fabrication technologies for the selective growth of silicon nanowire arrays and single nanowire on functional devices have been developed and posteriorly adapted for the fabrication of several nanowire based devices. In particular, the design, fabrication and characterization of a piezoresistive cantilever in which the active sensor is composed of an horizontal Si nanowire array has been demonstrated. Giant piezoresistance coefficients characteristics of Si nanowires are translated into an increment in the cantilever mechanical sensitivity compared with similar bulk devices. On the other hand, the fabrication of nanomechanical resonators based on single nanowires for mass sensing applications with different transduction mechanims has been performed. The characterization of these devices proved that single nanowires are exceptional platforms to develop ultra-high sensitive mass sensors and to study fundamental properties of nanomechanical structures

    Sub-10 nm resistless nanolithography for directed self-assembly of block copolymers

    No full text
    The creation of highly efficient guiding patterns for the directed self-Assembly of block copolymers by resistless nanolithography using atomic force microscopy (AFM) is demonstrated. It is shown that chemical patterns consisting of arrays of lines defined on a brush layer by AFM allow the alignment of the blocks of lamella-forming polymers. The main advantage of this method relies on the capability to create high-resolution (sub-10 nm line-width) guiding patterns and the reduction of the number of process steps compared to the state-of-the-Art methods for creating guiding patterns by chemical surface modification. It is found that the guiding patterns induce the block alignment very efficiently, allowing the achievement of a density multiplication factor of 7 for block copolymers of 14 nm half-pitch, which is attributed to the combined effect of topographical and chemical modification.This work was partially funded by the projects SNM (FP7-ICT-2011-8), FORCE-for-FUTURE (CSD2010-0024), SiNSoc (MAT2011-15159-E) and NaNeau (MAT2012-38319-C02-01).Peer Reviewe
    corecore