21 research outputs found

    99mTc-HYNIC-Fab (Bevacizumab): potencial agente de imagen para diagnóstico de Linfoma No Hodgkin

    Get PDF
    El factor de crecimiento endotelial vascular (VEGF), es un factor clave en la angiogénesis tumoral de muchos tipos de tumores, incluyendo el Linfoma No Hodgkin (LNH). El objetivo del presente trabajo es la radiomarcación de los fragmentos de unión al antígeno (Fab) del anticuerpo monoclonal Bevacizumab con 99mTc y su evaluación como potencial agente de imagen para LNH. Para lograrlo se analizó la expresión de VEGF mediante citometría de flujo en una línea celular de LNH (Toledo). La fragmentación se realizó empleando papaína y los Fab obtenidos fueron conjugados con NHS-HYNIC-Tfa y radiomarcados con 99mTc. La pureza radioquímica y la estabilidad fueron ensayadas. Se realizaron estudios de biodistribución tanto en ratones sanos como en portadores de LNH. Se observó que las células Toledo presentaron una elevada expresión de VEGF. El radiomarcaje se realizó de forma rápida, sencilla, reproducible y estable, con purezas radioquímicas >90%. Los estudios de biodistribución revelaron una significativa captación renal y tumoral, indicando que la principal vía de eliminación es renal. De los resultados obtenidos se concluye que el 99mTc-HYNIC-Fab (Bevacizumab) representa un potencial a agente de imagen de la expresión de VEGF asociada a LNH

    Luteinizing hormone-releasing hormone (LHRH): potential agent of molecular oncology

    Get PDF
    La hormona liberadora de la hormona luteinizante es un decapéptido producido por el hipotálamo y posee un rol fundamental en la regulación del eje pituitario/gonadal y en el ciclo ovárico. Es capaz de unirse a receptores específicos sobre las células gonadales para regular la síntesis y secreción de las hormonas gonadotróficas, las hormonas luteinizante y folículo estimulante. A su vez, se ha comprobado que receptores específicos de la hormona liberadora de la hormona luteinizante se encuentran sobreexpresados en cáncer mama, próstata, ovárico, entre otros; lo cual ha permitido su utilización, tanto de análogos como agonistas, en terapia para estas neoplasias, principalmente en cáncer de próstata y mama. Por lo anterior, nos planteamos desarrollar y optimizar la marcación con el radionucléido emisor gamma, el 99m-Tecnecio, del péptido LHRH, a modo de evaluar su potencial empleo como agente de imagen molecular en oncología. Para esto, el HYNIC-GSG-LHRH fue adquirido comercialmente. La marcación con 99mTc fue realizada a 50 ºC en presencia de diferentes co-ligandos incluyendo Tricina, Ácido etilendiaminodiacético, Tricina/Ácido etilendiaminodiacético y Tricina/Ácido Nicotínico. Las condiciones de marcación (pH, concentración de coligandos, concentración de agente reductor (cloruro de estaño), temperatura y tiempo de reacción fueron optimizadas en orden, para estandarizar el procedimiento. Se evaluaron las purezas radioquímicas por HPLC. Tanto los coeficientes de partición (Log P) y la estabilidad in vitro fueron determinadas a modo de obtener un agente de imagen estable y de alta pureza radioquímica. Se realizaron estudios biológicos in vitro de afinidad en distintas líneas celulares humanas de mama y próstata (MDA-MB-231, MCF-7 y MDA-MB-435) y próstata (PC3, LnCap y Du-145), así como su perfil de biodistribución en modelos murinos; a modo de obtener una aproximación al comportamiento biológico del nuevo radiotrazador. Logramos marcar el conjugado HYNIC-GSG-LHRH con 99m-Tecnecio, empleando altas actividades específicas usando como co-ligandos tanto Tricina como la mezcla Tricina/Ácido Nicotínico, obteniendo altas purezas radioquímicas (> 95%), alta estabilidad in vitro y baja lipofilicidad (Log P de -2,5 ± 0,05 y -2,82 ± 0,04, empleando Tricina y Tricina/Ácido Nicotínico, respectivamente). El conjugado [99mTc]-HYNIC-GSG-LHRH/Tricina-Ácido Nicotínico reveló elevada afinidad de unión específica por los receptores de la hormona liberadora de la hormona luteinizante expresados en las líneas celulares de mama y próstata. Se observó que el complejo radiomarcado presenta un perfil de biodistribución óptimo para ser empleado como potencial agente de imagen.Luteinizing hormone-releasing hormone is a decapeptide produced by the hypothalamus and has a fundamental role in the regulation of the pituitary/gonadal axis and in the ovarian cycle. It is able to bind to specific receptors on gonadal cells to regulate the synthesis and secretion of gonadotrophic hormones, luteinizing hormones and follicle stimulating hormones. In turn, it has been shown that specific receptors of the hormone releasing luteinizing hormone are overexpressed in breast, prostate, ovarian cancer, among others; which has allowed its use, both analogues and agonists, in therapy for these neoplasms, mainly in prostate and breast cancer. Therefore, we propose to develop and optimize the gamma emitting radionuclide labeling, 99m-Technetium, of the LHRH peptide, in order to assess its potential use as a molecular imaging agent in oncology. For this purpose, the HYNIC-GSG-LHRH was purchased commercially. The 99mTc labeling was performed at 50°C in the presence of different co-ligands including Tricine, Ethylenediamine diacetic acid, Tricine/Ethylenediamine diacetic acid and Tricine/Nicotinic acid. The marking conditions (pH, concentration of co-ligands, concentration of the reducing agent (tin chloride), temperature and reaction time) were optimized in order to standardize the procedure. The radiochemical purities were evaluated by HPLC. Both the partition coefficients (Log P) and in vitro stability were determined in order to obtain a stable imaging agent of high radiochemical purity. In vitro biological affinity studies were performed in different human breast and prostate cell lines (MDA-MB-231, MCF-7 and MDA-MB-435) and prostate (PC3, LnCap and Du-145), as well as their profile of biodistribution in murine models; in order to obtain an approximation to the biological behavior of the new radiotracer. We managed to label the conjugate HYNIC-GSG-LHRH with 99m-Tecnecio, using high specific activities using as co-ligands both Tricine and the Tricine/ Nicotinic Acid mixture, obtaining high radiochemical purities (> 95%), high stability in vitro and low lipophilicity (Log P of -2,5 ± 0,05 and -2,82 ± 0,04, using Tricine and Tricine/Nicotinic Acid, respectively). The [99mTc] -HYNIC-GSG-LHRH/Tricine-Nicotinic Acid conjugate revealed a high specific binding affinity for the luteinizing hormone-releasing hormone receptors expressed in the breast and prostate cell lines. It was observed that the radiolabeled complex presents an optimal biodistribution profile to be used as a potential imaging agent

    Nuclear DNA Replication in Trypanosomatids:There Are No Easy Methods for Solving Difficult Problems

    Get PDF
    In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens

    Hymenoptera “parasitica” no estado do Mato Grosso do Sul, Brasil

    Get PDF
    A checklist composed of 105 species of parasitic Hymenoptera, which includes the non-aculeate Apocrita, recorded in the state of Mato Grosso do Sul (MS), Brazil, is presented. A new list, containing 153 genera obtained in recent surveys is also presented; out of these 131 are new records. The major knowledge gaps for these organisms in the State and the prospects for future studies for these organisms are discussed. © 2017, Fundacao Zoobotanica do Rio Grande do Sul. All rights reserved

    Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection

    No full text
    O artigo apresenta nas duas primeiras páginas nota de correção.Submitted by sandra infurna ([email protected]) on 2016-03-31T12:56:45Z No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-03-31T15:33:31Z (GMT) No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5)Made available in DSpace on 2016-03-31T15:33:31Z (GMT). No. of bitstreams: 1 andre_torres_etal_IOC_2015.pdf: 1095119 bytes, checksum: df9054f950a043553746f4758ab01c35 (MD5) Previous issue date: 2015Universidade Federal do Rio de Janeiro. Instituto de Química. Departamento de Bioquímica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Simon Fraser University. Biological Sciences. Burnaby, BC, Canada.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina / Universidad Nacional del Noroeste de Buenos Aires. Centro de Bioinvestigaciones. Pergamino, Argentina.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de Genética. Rio de Janeiro, RJ, Brasil.Universidad de la República. Facultad de Ciencias. Sección Genética Evolutiva. Montevideo, Uruguay.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de Química. Departamento de Bioquímica. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.University of Notre Dame. Department of Biological Sciences. Notre Dame, IN.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Estadual Paulista. Departamento de Biologia. São Paulo, SP, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, Brasil.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Institut de Recherche pour le Development. Centre National de la Recherche Scientifique. Laboratoire d`Evolution, Génome et Spéciation. Gif sur Yvette, France / Université Paris-Sud, Orsay, France.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Université François Rabelais. Centre National de la Recherche Sicentifique. Institut de Recherche sur la Biologie de l`Insect. Tours, France.Université Paris-Sud, Orsay, France.Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de Genética. Rio de Janeiro, RJ, Brasil.University of Toronto. Department of Biology. Mississauga, ON, Canada.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, Brasil.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Biologia. Departamento de Genética. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, Brasil.Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil /Universidade Federal do Rio de Janeiro. Faculdade de Farmácia. Departamento de Biotecnologia Farmacêutica. Rio de Janeiro, RJ, Brasil.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Universidade Federal do Rio de Janeiro. Instituto de Química. Departamento de Bioquímica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. oDepartment of Physiology, Biophysics and Neuroscience. Mexico City, Mexico.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Fisiologia e BIoquímica. Belo Horizonte, MG, Brasil.Florida International University. Department of Biological Sciences. Miami, FL, USA.Florida International University. Department of Biological Sciences. Miami, FL, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal Rural do Rio de Janeiro. Instituto de Ciências Biológicas e da Saúde. Departamento de Biologia Animal. Seropédica, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.University of Toronto. Department of Biology. Mississauga, ON, Canada.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal de Minas Gerais.Instituto de Ciências Biológicas. Departamento de Parasitologia. Belo Horizonte, MG, Brasil.The John Hopkins University. Bloomberg School of Public Health. Deparment of Molecular Microbiology and Immunology. Baltimore, MD, USA.Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Espirito Santo. Núcleo de Doenças Infecciosas. Vitória, ES, Brasil.University of Illinois at Urbana–Champaign. Department of Entomology. Urbana, IL, USA.Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.The Barcelona Institute of Science and Technology. Centre for Genomic Regulation. Barcelona, Spain / Universitat Pompeu Fabra. Barcelona, Spain.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil./ Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal de Uberlândia. Faculdade de Computação. Instituto de Genética e Bioquímica. Laboratório de Bioinformática e Análises Moleculares. Uberlândia, MG, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilUniversity of Santiago de Compostela. Instituto de Investigaciones Sanitarias. School of Medicine– Center for Resesarch in Molecular Medicine and Chronic Diseases. Department of Physiology. Santiago de Compostela, Spain.Virginia Polytechnic Institute. Department of Biochemistry. Blacksburg, VA, USA.University of Cambridge. Deparment of Veterinary Medicine. Cambridge, United Kingdom.Simon Fraser University. Biological Sciences. Burnaby, BC, Canada.National Institutes of Health. National Institute of Allergy and Infectious Diseases. Section of Vector Biology. Rockville, MD, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, BrasilEuropean Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.University of Manitoba.Department of Biological Sciences. Winnipeg, MB, Canada.Centers for Disease Control and Prevention. Entomology Branch. Division of Parasitic Diseases and Malaria. Atlanta, GA, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil..Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.University of Geneva Medical School. Department of Genetic Medicine and Development. Geneva 1211, Switzerland / Swiss Institute of Bioinformatics. Geneva 1211, Switzerland / Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory. Cambridge, MA, USA / The Broad Institute of MIT and Harvard. Cambridge, MA, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Grupo de Pesquisa em Ecologia de Doenças Transmissíveis na Amazônia. AM, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal de Uberlândia. Faculdade de Computação. Instituto de Genética e Bioquímica. Laboratório de Bioinformática e Análises Moleculares. Uberlândia, MG, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Ciências Biomédicas. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Parasitologia. Belo Horizonte, MG, Brasil.National Institutes of Health. National Center for Biotechnology Information. Rockville, MD, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Ciências Médicas. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Química. Departamento de Bioquímica. Rio de Janeiro, RJ, Brasil / Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil.Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP, CONICET). La Plata, Argentina.Universidade Estadual Paulista. Departamento de Biologia. São Paulo, SP, Brasil.European Bioinformatics Institute. European Molecular Biology Laboratory. Welcome Trust Genome Campus. Hinxton, Cambridge, United Kingdom.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Universidade Estadual do Norte Fluminense Darcy Ribeiro. Centro de Biociências e Biotecnologia. Laboratório de Química e Função de Proteínas e Peptídeos. Campos de Goytacazes, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.The John Hopkins University. Bloomberg School of Public Health. Deparment of Molecular Microbiology and Immunology. Baltimore, MD, USA.University of Notre Dame. Department of Computer Science and Engineering. Notre Dame, IN.Universidad Nacional de La Plata. Centro Regional de Estudios Genomicos. La Plata, Argentina.Universidade Federal Rural do Rio de Janeiro. Instituto de Ciências Biológicas e da Saúde. Departamento de Biologia Animal. Seropédica, RJ, Brasil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Sérgio Arouca. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Núcleo de Pesquisas Ecológicas de Macaé. Macaé, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Ciências Biomédicas. Rio de Janeiro, RJ, Brasil.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Washington University School of Medicine. McDonnell Genome Institute. St. Louis, MO, USA.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Bioquímica Médica Leopoldo de Meis. Programa de Biologia Molecular e Biotecnologia. Rio de Janeiro, RJ, Brasil.Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immunedeficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore