20,491 research outputs found

    Natural and laser-induced cavitation in corn stems: On the mechanisms of acoustic emissions

    Get PDF
    Water in plant xylem is often superheated, and therefore in a meta-stable state. Under certain conditions, it may suddenly turn from the liquid to the vapor state. This cavitation process produces acoustic emissions. We report the measurement of ultrasonic acoustic emissions (UAE) produced by natural and induced cavitation in corn stems. We induced cavitation and UAE in vivo, in well controlled and reproducible experiments, by irradiating the bare stem of the plants with a continuous-wave laser beam. By tracing the source of UAE, we were able to detect absorption and frequency filtering of the UAE propagating through the stem. This technique allows the unique possibility of studying localized embolism of plant conduits, and thus to test hypotheses on the hydraulic architecture of plants. Based on our results, we postulate that the source of UAE is a transient "cavity oscillation" triggered by the disruptive effect of cavitation inception.Comment: 8 pages, 5 figure

    Heavy mesons in the Quark Model

    Full text link
    Since the discovery of the J/ψJ/\psi, the quark model was very successful in describing the spectrum and properties of heavy mesons including only qqˉq\bar q components. However since 2003, with the discovery of the X(3872)X(3872), many states that can not be accommodated on the naive quark model have been discovered, and they made unavoidable to include higher Fock components on the heavy meson states. We will give an overview of the success of the quark model for heavy mesons and point some of the states that are likely to be more complicated structures such as meson-meson molecules.Comment: Contribution to the Proceedings of the 15th International Workshop on Meson Physics - MESON201

    The X(3872) and other possible XYZXYZ molecular states

    Full text link
    We perform a coupled channel calculation of the DD∗DD^* and ccˉc\bar c sectors in the framework of a constituent quark model. The interaction for the DD∗DD^* states is obtained using the Resonant Group Method (RGM) and the underlying quark interaction model. The coupling with the two quark system is performed using the 3P0^3 P_0 model. The X(3872) is found as a molecular state with a sizable ccˉc\bar c component. A comparison with Belle and BaBar data has been done, finding a good agreement. Other possible molecular molecular states are discussed.Comment: 5 pages, 5 figures, Proceedings to the Hadron 2009 - XIII International Conference on Hadron Spectroscopy, Florida State University (USA

    On qq- Component Models on Cayley Tree: The General Case

    Full text link
    In the paper we generalize results of paper [12] for a qq- component models on a Cayley tree of order k≥2k\geq 2. We generalize them in two directions: (1) from k=2k=2 to any k≥2;k\geq 2; (2) from concrete examples (Potts and SOS models) of q−q- component models to any qq- component models (with nearest neighbor interactions). We give a set of periodic ground states for the model. Using the contour argument which was developed in [12] we show existence of qq different Gibbs measures for qq-component models on Cayley tree of order k≥2k\geq 2.Comment: 8 page

    A family of complex potentials with real spectrum

    Get PDF
    We consider a two-parameter non hermitean quantum-mechanical hamiltonian that is invariant under the combined effects of parity and time reversal transformation. Numerical investigation shows that for some values of the potential parameters the hamiltonian operator supports real eigenvalues and localized eigenfunctions. In contrast with other PT symmetric models, which require special integration paths in the complex plane, our model is integrable along a line parallel to the real axis.Comment: Six figures and four table

    Characterizing SL2S galaxy groups using the Einstein radius

    Full text link
    We analyzed the Einstein radius, θE\theta_E, in our sample of SL2S galaxy groups, and compared it with RAR_A (the distance from the arcs to the center of the lens), using three different approaches: 1.- the velocity dispersion obtained from weak lensing assuming a Singular Isothermal Sphere profile (θE,I\theta_{E,I}), 2.- a strong lensing analytical method (θE,II\theta_{E,II}) combined with a velocity dispersion-concentration relation derived from numerical simulations designed to mimic our group sample, 3.- strong lensing modeling (θE,III\theta_{E,III}) of eleven groups (with four new models presented in this work) using HST and CFHT images. Finally, RAR_A was analyzed as a function of redshift zz to investigate possible correlations with L, N, and the richness-to-luminosity ratio (N/L). We found a correlation between θE\theta_{E} and RAR_A, but with large scatter. We estimate θE,I\theta_{E,I} = (2.2 ±\pm 0.9) + (0.7 ±\pm 0.2)RAR_A, θE,II\theta_{E,II} = (0.4 ±\pm 1.5) + (1.1 ±\pm 0.4)RAR_A, and θE,III\theta_{E,III} = (0.4 ±\pm 1.5) + (0.9 ±\pm 0.3)RAR_A for each method respectively. We found a weak evidence of anti-correlation between RAR_A and zz, with LogRAR_A = (0.58±\pm0.06) - (0.04±\pm0.1)zz, suggesting a possible evolution of the Einstein radius with zz, as reported previously by other authors. Our results also show that RAR_A is correlated with L and N (more luminous and richer groups have greater RAR_A), and a possible correlation between RAR_A and the N/L ratio. Our analysis indicates that RAR_A is correlated with θE\theta_E in our sample, making RAR_A useful to characterize properties like L and N (and possible N/L) in galaxy groups. Additionally, we present evidence suggesting that the Einstein radius evolves with zz.Comment: Accepted for publication in Astronomy & Astrophysics. Typos correcte

    Embedded AGN and star formation in the central 80 pc of IC 3639

    Full text link
    [Abridged] Methods: We use interferometric observations in the NN-band with VLTI/MIDI to resolve the mid-IR nucleus of IC 3639. The origin of the nuclear infrared emission is determined from: 1) the comparison of the correlated fluxes from VLTI/MIDI with the fluxes measured at subarcsec resolution (VLT/VISIR, VLT/ISAAC); 2) diagnostics based on IR fine-structure line ratios, the IR continuum emission, IR bands produced by polycyclic aromatic hydrocarbons (PAH) and silicates; and 3) the high-angular resolution spectral energy distribution. Results: The unresolved flux of IC 3639 is 90±20 mJy90 \pm 20\, \rm{mJy} at 10.5 μm10.5\, \rm{\mu m}, measured with three different baselines in VLTI (UT1-UT2, UT3-UT4, and UT2-UT3; 4646-58 m58\, \rm{m}), making this the faintest measurement so far achieved with mid-IR interferometry. The correlated flux is a factor of 33-44 times fainter than the VLT/VISIR total flux measurement. The observations suggest that most of the mid-IR emission has its origin on spatial scales between 1010 and 80 pc80\, \rm{pc} (4040-340 mas340\, \rm{mas}). A composite scenario where the star formation component dominates over the AGN is favoured by the diagnostics based on ratios of IR fine-structure emission lines, the shape of the IR continuum, and the PAH and silicate bands. Conclusions: A composite AGN-starburst scenario is able to explain both the mid-IR brightness distribution and the IR spectral properties observed in the nucleus of IC 3639. The nuclear starburst would dominate the mid-IR emission and the ionisation of low-excitation lines (e.g. [NeII]12.8μm_{12.8 \rm{\mu m}}) with a net contribution of ∼70%\sim 70\%. The AGN accounts for the remaining ∼30%\sim 30\% of the mid-IR flux, ascribed to the unresolved component in the MIDI observations, and the ionisation of high-excitation lines (e.g. [NeV]14.3μm_{14.3 \rm{\mu m}} and [OIV]25.9μm_{25.9 \rm{\mu m}}).Comment: Accepted for publication in A&
    • …
    corecore