1,150 research outputs found
Recommended from our members
Chromhome: a rich internet application for accessing comparative chromosome homology maps.
BACKGROUND: Comparative genomics has become a significant research area in recent years, following the availability of a number of sequenced genomes. The comparison of genomes is of great importance in the analysis of functionally important genome regions. It can also be used to understand the phylogenetic relationships of species and the mechanisms leading to rearrangement of karyotypes during evolution. Many species have been studied at the cytogenetic level by cross species chromosome painting. With the large amount of such information, it has become vital to computerize the data and make them accessible worldwide. Chromhome http://www.chromhome.org is a comprehensive web application that is designed to provide cytogenetic comparisons among species and to fulfil this need. RESULTS: The Chromhome application architecture is multi-tiered with an interactive client layer, business logic and database layers. Enterprise java platform with open source framework OpenLaszlo is used to implement the Rich Internet Chromhome Application. Cross species comparative mapping raw data are collected and the processed information is stored into MySQL Chromhome database. Chromhome Release 1.0 contains 109 homology maps from 51 species. The data cover species from 14 orders and 30 families. The homology map displays all the chromosomes of the compared species as one image, making comparisons among species easier. Inferred data also provides maps of homologous regions that could serve as a guideline for researchers involved in phylogenetic or evolution based studies. CONCLUSION: Chromhome provides a useful resource for comparative genomics, holding graphical homology maps of a wide range of species. It brings together cytogenetic data of many genomes under one roof. Inferred painting can often determine the chromosomal homologous regions between two species, if each has been compared with a common third species. Inferred painting greatly reduces the need to map entire genomes and helps focus only on relevant regions of the chromosomes of the species under study. Future releases of Chromhome will accommodate more species and their respective gene and BAC maps, in addition to chromosome painting data. Chromhome application provides a single-page interface (SPI) with desktop style layout, delivering a better and richer user experience.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Multidirectional chromosome painting substantiates the occurrence of extensive genomic reshuffling within Accipitriformes.
BACKGROUND: Previous cross-species painting studies with probes from chicken (Gallus gallus) chromosomes 1-10 and a paint pool of nineteen microchromosomes have revealed that the drastic karyotypic reorganization in Accipitridae is due to extensive synteny disruptions and associations. However, the number of synteny association events and identities of microchromosomes involved in such synteny associations remain undefined, due to the lack of paint probes derived from individual chicken microchromosomes. Moreover, no genome-wide homology map between Accipitridae species and other avian species with atypical karyotype organization has been reported till now, and the karyotype evolution within Accipitriformes remains unclear. RESULTS: To delineate the synteny-conserved segments in Accipitridae, a set of painting probes for the griffon vulture, Gyps fulvus (2n = 66) was generated from flow-sorted chromosomes. Together with previous generated probes from the stone curlew, Burhinus oedicnemus (2n = 42), a Charadriiformes species with atypical karyotype organization, we conducted multidirectional chromosome painting, including reciprocal chromosome painting between B. oedicnemus and G. fulvus and cross-species chromosome painting between B. oedicnemus and two accipitrid species (the Himalayan griffon, G. himalayensis 2n = 66, and the common buzzard, Buteo buteo, 2n = 68). In doing so, genome-wide homology maps between B. oedicnemus and three Accipitridae species were established. From there, a cladistic analysis using chromosomal characters and mapping of chromosomal changes on a consensus molecular phylogeny were conducted in order to search for cytogenetic signatures for different lineages within Accipitriformes. CONCLUSION: Our study confirmed that the genomes of the diurnal birds of prey, especially the genomes of species in Accipitriformes excluding Cathartidae, have been extensively reshuffled when compared to other bird lineages. The chromosomal rearrangements involved include both fusions and fissions. Our chromosome painting data indicated that the Palearctic common buzzard (BBU) shared several common chromosomal rearrangements with some Old World vultures, and was found to be more closely related to other Accipitridae than to Neotropical buteonine raptors from the karyotypic perspective. Using both a chromosome-based cladistic analysis as well as by mapping of chromosomal differences onto a molecular-based phylogenetic tree, we revealed a number of potential cytogenetic signatures that support the clade of Pandionidae (PHA) + Accipitridae. In addition, our cladistic analysis using chromosomal characters appears to support the placement of osprey (PHA) in Accipitridae
The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals.
BACKGROUND: The evolution of genomic imprinting, the parental-origin specific expression of genes, is the subject of much debate. There are several theories to account for how the mechanism evolved including the hypothesis that it was driven by the evolution of X-inactivation, or that it arose from an ancestrally imprinted chromosome. RESULTS: Here we demonstrate that mammalian orthologues of imprinted genes are dispersed amongst autosomes in both monotreme and marsupial karyotypes. CONCLUSION: These data, along with the similar distribution seen in birds, suggest that imprinted genes were not located on an ancestrally imprinted chromosome or associated with a sex chromosome. Our results suggest imprinting evolution was a stepwise, adaptive process, with each gene/cluster independently becoming imprinted as the need arose.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group
The extremely high rate of karyotypic evolution that characterizes the shrews of the Sorex araneus group makes this group an exceptionally interesting model for population genetics and evolutionary studies. Here, we attempted to map 46 microsatellite markers at the chromosome arm level using flow-sorted chromosomes from three karyotypically different taxa of the Sorex araneus group (S. granarius and the chromosome races Cordon and Novosibirsk of S. araneus). The most likely localizations were provided for 35 markers, among which 25 were each unambiguously mapped to a single locus on the corresponding chromosomes in the three taxa, covering the three sexual chromosomes (XY1Y2) and nine of the 18 autosomal arms of the S. araneus group. The results provide further evidence for a high degree of conservation in genome organization in the S. araneus group despite the presence of numerous Robertsonian rearrangements. These markers can therefore be used to compare the genetic structure among taxa of the S. araneus group at the chromosome level and to study the role of chromosomal rearrangements in the genetic diversification and speciation process of this grou
Multiple rearrangements in cryptic species of electric knifefish, Gymnotus carapo (Gymnotidae, Gymnotiformes) revealed by chromosome painting.
BACKGROUND: Gymnotus (Gymnotidae, Gymnotiformes) is the Neotropical electric fish genus with the largest geographic distribution and the largest number of species, 33 of which have been validated. The diploid number varies from 2n = 39-40 to 2n = 54. Recently we studied the karyotype of morphologically indistinguishable samples from five populations of G. carapo sensu stricto from the Eastern Amazon of Brazil. We found two cytotypes, 2n = 42 (30 M/SM + 12 ST/A) and 2n = 40 (34 M/SM + 6 ST/A) and we concluded that the differences between the two cryptic species are due to pericentric inversions and one tandem fusion. RESULTS: In this study we use for the first time, whole chromosome probes prepared by FACS of the Gymnotus carapo sensu strictu species, cytotype with 2n = 42. Using two color hybridizations we were able to distinguish pairs 1, 2, 3, 7, 9, 14, 16, 18, 19, 20 and 21. It was not possible to separate by FACS and distinguish each of the following chromosome pairs even with dual color FISH: {4,8}; {10,11}; {5,6,17}; {12,13,15}. The FISH probes were then used in chromosome painting experiments on metaphases of the 2n = 40 cytotype. While some chromosomes show conserved synteny, others are rearranged in different chromosomes. Eight syntenic associations were found. CONCLUSIONS: These results show that the karyotype differences between these cryptic species are greater than assumed by classical cytogenetics. These data reinforce the previous supposition that these two cytotypes are different species, despite the absence of morphological differences. Additionally, the homology of repetitive DNA between the two provides evidence of recent speciation.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting.
BACKGROUND: The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family. RESULTS: W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes. CONCLUSIONS: Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Extensive Karyotype Reorganization in the Fish Gymnotus arapaima (Gymnotiformes, Gymnotidae) Highlighted by Zoo-FISH Analysis.
The genus Gymnotus (Gymnotiformes) contains over 40 species of freshwater electric fishes exhibiting a wide distribution throughout Central and South America, and being particularly prevalent in the Amazon basin. Cytogenetics has been an important tool in the cytotaxonomy and elucidation of evolutionary processes in this genus, including the unraveling the variety of diploid chromosome number (2n = from 34 to 54), the high karyotype diversity among species with a shared diploid number, different sex chromosome systems, and variation in the distribution of several Repetitive DNAs and colocation and association between those sequences. Recently whole chromosome painting (WCP) has been used for tracking the chromosomal evolution of the genus, showing highly reorganized karyotypes and the conserved synteny of the NOR bearing par within the clade G. carapo. In this study, painting probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30 m/sm + 12 st/a) were hybridized to the mitotic metaphases of G. arapaima (GAR, 2n = 44, 24 m/sm + 20 st/a). Our results uncovered chromosomal rearrangements and a high number of repetitive DNA regions. From the 12 chromosome pairs of G. carapo that can be individually differentiated (GCA1-3, 6, 7, 9, 14, 16, and 18-21), six pairs (GCA 1, 9, 14, 18, 20, 21) show conserved homology with GAR, five pairs (GCA 1, 9, 14, 20, 21) are also shared with cryptic species G. carapo 2n = 40 (34 m/sm + 6 st/a) and only the NOR bearing pair (GCA 20) is shared with G. capanema (GCP 2n = 34, 20 m/sm + 14 st/a). The remaining chromosomes are reorganized in the karyotype of GAR. Despite the close phylogenetic relationships of these species, our chromosome painting studies demonstrate an extensive reorganization of their karyotypes
Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting.
In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus, which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds
Recommended from our members
Human cytogenetics at Johns Hopkins Hospital, 1959–1962
Abstract: An account is given of the introduction of human cytogenetics to the Division of Medical Genetics at Johns Hopkins Hospital, and the first 3 years' work of the chromosome diagnostic laboratory that was established at the time. Research on human sex chromosome disorders, including novel discoveries in the Turner and Klinefelter syndromes, is described together with original observations on chromosome behavior at mitosis. It is written in celebration of the centenary of the birth of Victor McKusick, the acknowledged father of Medical Genetics, who established the Division and had the foresight to ensure that it included the investigation of human chromosomes
- …
