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The genus Gymnotus (Gymnotiformes) contains over 40 species of freshwater electric

fishes exhibiting a wide distribution throughout Central and South America, and being

particularly prevalent in the Amazon basin. Cytogenetics has been an important tool

in the cytotaxonomy and elucidation of evolutionary processes in this genus, including

the unraveling the variety of diploid chromosome number (2n = from 34 to 54), the

high karyotype diversity among species with a shared diploid number, different sex

chromosome systems, and variation in the distribution of several Repetitive DNAs and

colocation and association between those sequences. Recently whole chromosome

painting (WCP) has been used for tracking the chromosomal evolution of the genus,

showing highly reorganized karyotypes and the conserved synteny of the NOR bearing

par within the clade G. carapo. In this study, painting probes derived from the

chromosomes of G. carapo (GCA, 2n = 42, 30 m/sm + 12 st/a) were hybridized

to the mitotic metaphases of G. arapaima (GAR, 2n = 44, 24 m/sm + 20 st/a).

Our results uncovered chromosomal rearrangements and a high number of repetitive

DNA regions. From the 12 chromosome pairs of G. carapo that can be individually

differentiated (GCA1–3, 6, 7, 9, 14, 16, and 18–21), six pairs (GCA 1, 9, 14, 18, 20,

21) show conserved homology with GAR, five pairs (GCA 1, 9, 14, 20, 21) are also

shared with cryptic species G. carapo 2n = 40 (34 m/sm + 6 st/a) and only the NOR

bearing pair (GCA 20) is shared with G. capanema (GCP 2n = 34, 20 m/sm + 14

st/a). The remaining chromosomes are reorganized in the karyotype of GAR. Despite

the close phylogenetic relationships of these species, our chromosome painting studies

demonstrate an extensive reorganization of their karyotypes.

Keywords: chromosome painting, WCP, Gymnotus, FISH, cytotaxonomy, karyotype evolution

INTRODUCTION

Gymnotus (Gymnotiformes) is a monophyletic genus of freshwater electric fishes (Albert, 2001;
Lovejoy et al., 2010; Tagliacollo et al., 2016) distributed throughout South America (Albert et al.,
2005). It represents the most specious genus (40 species; Ferraris et al., 2017) and the widest
distribution in the order, with prevalence in the Amazon basin, where several species of Gymnotus
co-occur in sympatry (Albert and Crampton, 2003; Crampton et al., 2005).
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Based on the integrated data from DNA sequencing of six
genes, coupled with 223 morphological characters and with
Model-Based Total Evidence phylogenetic analyses, Tagliacollo
et al. (2016) divided the genus into six clades: G. pantherinus,
G. coatesi, G. anguillaris, G. tigre, G. cylindricus, and G. carapo.
The Gymnotus carapo group is regarded as monophyletic and
is located in a derived position within the genus (Albert, 2001;
Lovejoy et al., 2010; Tagliacollo et al., 2016). Craig et al. (2017)
described seven subspecies for G. carapo.

Cytogenetics has been an important tool in cytotaxonomy
and has proved to be very useful in understanding the
evolutionary processes behind the diversification of Gymnotus.
The Gymnotiformes order has considerable variation, not only in
diploid number (from 2n = 24 in Apteronotus albifrons, Howell,
1972; Almeida-Toledo et al., 1981; Mendes et al., 2012; to 2n
= 74 in Rhabdolichops cf eastward, Suárez et al., 2017) but also
in the karyotype formula and location of repetitive sequences
(Fernandes et al., 2005; Almeida-Toledo et al., 2007; Silva et al.,
2009; da Silva et al., 2013; Jesus et al., 2016; Araya-Jaime et al.,
2017; Batista et al., 2017; Sousa et al., 2017; Takagui et al.,
2017). Recently, fluorescence in situ hybridization (FISH), has
played an important role in understanding the genome structure
of fish species (Yi et al., 2003; Cabral-de-Mello and Martins,
2010; Martins et al., 2011; Vicari et al., 2011; Gornung, 2013;
Knytl et al., 2013; Yano et al., 2017) and molecular cytogenetic
studies in Gymnotiformes have shown dynamic reorganization,
including pericentric inversions observed through repetitive
DNA position (Fernandes et al., 2017), sequence dispersion
via transposable elements and the association between different
repetitive sequences (Utsunomia et al., 2014; da Silva et al.,
2016; Machado et al., 2017) and the presence of different sex
chromosome systems (Margarido et al., 2007; Henning et al.,
2008, 2011; da Silva et al., 2011, 2014; Almeida et al., 2015).
This evolutionary plasticity of the karyotype is seen in Gymnotus
(Table 1), a genus that has high interspecific variability in
chromosome numbers (Figure 1, Table 1), ranging from 2n =

34 in Gymnotus capanema (Milhomem et al., 2012a) to 2n =

54 in G. carapo (Foresti et al., 1984), G. mamiraua (Milhomem
et al., 2007), G. paraguensis (Margarido et al., 2007) and G.
inaequilabiatus (Scacchetti et al., 2011). Gymnotus arapaima is
located within the G. carapo clade, with 2n = 44 (24 m/sm + 20
st/a; Milhomem et al., 2012b).

Whole chromosome painting (WCP) techniques use specific
painting probes of whole chromosomes, chromosomes arms or
chromosome regions to find homologous segments in other
species (Yang and Graphodatsky, 2017) and Nagamachi et al.
(2010) produced whole chromosome probes from G. carapo
(GCA, 2n = 42) by chromosome sorting using flow cytometry
and made a comparative genomic map against the chromosomal
background of the cytotype with 2n = 40 chromosomes. The
results uncovered a high degree of chromosomal repatterning
between these cytotypes, with only eight pairs showing conserved
synteny (GCA 1, 2, 6, 9, 14, 19, 20, 21). Nagamachi et al. (2013)
used the same set of probes for G. capanema (GCP, 2n= 34) and
the results showed that the degree of genomic reorganization was
much higher, with only four pairs (GCA 6, 7, 19, 20) showing
conserved synteny with GCA 2n = 42 and three pairs (GCA 6,

19, 20) with GCA 2n= 40. Of these, GCA 7 and 19 are associated
with other chromosomes in the karyotype of GCP. The study of
Milhomem et al. (2013), with the probe derived from the NOR
bearing par of GCA, 2n = 42, shows that there is a possible
synapomorphy of the NOR bearing par within the G. carapo
clade.

We use the same set of probes produced by Nagamachi et al.
(2010) to analyze the karyotype of G. arapaima and to compare
the results with our previous studies of species in the genus
Gymnotus. Our findings confirm and extend our understanding
of the extensive karyotype reorganization within this genus.

MATERIALS AND METHODS

Sampling
Samples of G. arapaima (GAR, 2n = 44, 24 m/sm +

20 st/a) were collected in the Mamiraua Reserve (Reserva
de Desenvolvimento Sustentável Mamiraua) in the Amazon
basin, Brazil (03◦02′11.8′′S 064◦51′16.6′′W). These samples
were previously analyzed by conventional cytogenetic methods
(Milhomem et al., 2012b). The animals collected were handled
following procedures recommended by the American Fisheries
Society. JCP has a permanent field permit, number 13248 from
“Instituto Chico Mendes de Conservação da Biodiversidade.”
The Cytogenetics Laboratory of UFPa has permit number
19/2003 from the Ministry of Environment for sample transport
and permit 52/2003 for using the samples for research. The Ethics
Committee of the Federal University of Para (Comitê de Ética
Animal da Universidade Federal do Pará) approved this research
(Permit 68/2015).

WCP
WCP probes from G. carapo (2n = 42; 30 m/sm + 12 st/a)
described in Nagamachi et al. (2010) were hybridized onto
metaphases of G. arapaima (GAR, 2n = 44, 24 m/sm + 20
st/a). The chromosomes of GCA, 2n = 42 were flow-sorted
into four regions (R1–R4), from which probes were produced.
R1 represented the NOR-bearing chromosome (GCA20), R2
contains the four largest pairs (1–3 and 16); R3 contains the
eight medium-sized pairs (4–8 and 17–19) and R4 the eight
smallest pairs (9–15 and 21). Additional sorting produced
subregion probes (S) from each of the three regions with multiple
chromosome pairs included (R2, R3 and R4). R2: S2A (GCA
1, 2 and 16); S2B (GCA 2 and 16) and S2C (GCA 1 and 16).
R3: S3A GCA (5–7 and 17); S3B (GCA6 not 7; re-analyzed in
Nagamachi et al., 2013, GCA 19); S3C (GCA 7); and S3D (GCA5–
7, 17 and 18). R4: S4A (GCA 12, 13 and 15); S4B (GCA 12–
15); S4C (GCA 10–13, 15 and 21); and S4D (GCA 12–15 and
21). For details, see Figure 2 and Table 1 in Nagamachi et al.
(2010).

To find out the corresponding segments between GAR and
GCA (2n = 42), we used dual-color FISH with probes from R3
and R4. The other non-hybridized chromosomes or segments
correspond to R1 (GAR 19, Milhomem et al., 2013) or R2. For
a more refined identification of the chromosomes from R2, R3
and R4, we employed dual-color FISH using probes from the
subregions as specified in Table 2 of Nagamachi et al. (2010),
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FIGURE 1 | Representative tree of species of Gymnotus with diploid number known (Data present in Table 1). It was included only species with know phylogenetic

relationships, based on data from Albert et al. (2005) and Tagliacollo et al. (2016). G. capanema was included in the G. carapo clade based on Milhomem et al.

(2012a), but has unclear place within the clade.

FIGURE 2 | Ideograms of the karyotype of G. carapo (2n = 42) representing: (A) The four chromosome regions (R1, R2, R3, R4) obtained by Nagamachi et al. (2010).

(B–M) Dual – color FISH experiments based on Nagamachi et al. (2010, 2013), to identify chromosomal homology with GCA (2n = 42). S2A, S2B, and S2C

represents sub-regions (A–C) within region 2; S3A, S3B, S3C, and S3D represents sub-regions (A–D) within region 3; S4A, S4B, S4C, and S4D represents

sub-regions (A–D) within region 4.
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TABLE 1 | Cytogenetic data from the genus Gymnotus, including 2n, karyotype formula (KF), NOR and ribosomal DNA sequences 18 and 5S.

Species 2n (KF) NOR* 18S* 5S* Authors

Gymnotus arapaima 44 (24 m/sm + 20 st/a) 2 2 – Milhomem et al., 2012b

Gymnotus bahianus ♀36 (30 m/sm + 6 st)

♂37 (32 m/sm + 5 st)

2 2 2 Almeida et al., 2015

Gymnotus carapo 54 (54 m/sm) 2 – – Foresti et al., 1984

52 (50 m/sm + 2 st/a) 2 – –

48 (34 m/sm + 14 st/a) – – –

42 (32 m/sm + 10 st/a) 2 – – Fernandes-Matioli et al., 1998

54 (52 m/sm + 2 st/a) 2 – – Claro, 2008

54 (52 m/sm + 2 st/a) 2 14 2 Milhomem et al., 2007

42 (30 m/sm + 12 st/a) 2 – – Milhomem et al., 2008

40 (28 m/sm + 12 st/a) 2 – –

Gymnotus cf. carapo 54 (50 m/sm + 4 st/a) 2 2 ≤ 30 Scacchetti et al., 2011

Gymnotus carapo’Catalão’ 40 (30 m/sm + 10 st) – 2 4 da Silva et al., 2014

Gymnotus

carapo’Maranhão’

42 (30 m/sm + 12 st/4a) – 2 14 da Silva, 2015

Gymnotus capanema 34 (20 m/sm + 14 st/a) 2 2 – Milhomem et al., 2012a

Gymnotus coatesi 50 (24 m/sm + 26 st/a) 8 19 2 Machado et al., 2017

Gymnotus coropinae ♀50 (28 m/sm + 22 st/a)

♂49 (26 m/sm + 23 st/a)

– 2 2 da Silva et al., 2014

Gymnotus inaequilabiatus 52 (50 m/sm + 2 st/a) 2 – – Fernandes-Matioli et al., 1998

54 (52 m/sm + 2 st/a) – 2 ≤34 Scacchetti et al., 2011

Gymnotus javari 50 (20 m/sm + 30 st/a) – – 2 Utsunomia et al., 2014

Gymnotus jonasi 52 (12 m/sm + 40 st/a) 6 6 – Milhomem et al., 2012b

Gymnotus mamiraua 54 (50 m/sm + 4 st/a) – – –

54 (38 m/sm + 16 st/a) 2 2
26

Milhomem et al., 2012b

da Silva et al., 2016

Gymnotus pantanal 40 (14 m/sm + 26 st/a)

♀40 (14 m/sm + 26 st/a)

♂39 (15 m/sm + 24 st/a)

4

2

–

–

–

4

Fernandes et al., 2005.

Margarido et al., 2007; da Silva et al., 2011

Gymnotus pantherinus 52 (46 m/sm + 6 st/a) 2 – – Fernandes-Matioli et al., 1998

52 (50 m/sm + 2 st/a) 2 2 4 Scacchetti et al., 2011

Gymnotus paraguensis 54 (52 m/sm + 2 st) 2 – 38 Margarido et al., 2007; da Silva et al., 2011

54 (50 m/sm + 4 st) 2 – – Lacerda and Maistro, 2007

Gymnotus cf. pedanopterus 50 (42 m/sm + 8 st/a) – 2 2 da Silva, 2015

Gymnotus cf. stenoleucus 48 (20 m/sm + 28 st/a) – 2 2 da Silva, 2015

Gymnotus sylvius 40 (38 m/sm + 2 st/a) 2 – – Fernandes-Matioli et al., 1998

40 (30 m/sm + 10 st/a) 2 – – Albert et al., 1999

40 (38 m/sm + 2 st/a) 2 – – Claro, 2008

40 (36 m/sm + 4 st/a) 2 – – Lacerda and Maistro, 2007

40 (36 m/sm + 4 st/a) 2 – – Margarido et al., 2007

40 (34 m/sm + 6 st) 2 2 2 Scacchetti et al., 2011

Gymnotus ucamara 44 (28 m/sm + 16 st/a) – 2 4 da Silva, 2015

Gymnotus sp. 50 (26 m/sm + 24 st/a) 2 – – Lacerda and Maistro, 2007

Gymnotus sp. ‘Negro’ ♀50 (22 m/sm + 28 st)

♂50 (21 m/sm + 29 st)

– 2 4 da Silva et al., 2014

*Number of chromosome with signals; m, metacentric; sm, submetacentric; st, subtelocentric; a, acrocentric.

with some modifications related to the identification of the
chromosomes of S3B made in Nagamachi et al. (2013). With
those experiments (as illustrated in Figure 2) it was possible to
identify individually GCA pairs 1–3, 6, 7, 9, 14, 16, and 18–21,
while it was not possible to distinguish the pairs [4, 8], [10, 11],
[5, 17], and [12, 13, 15].

FISH
Chromosome painting techniques followed Yang et al. (1995)
with adaptations. Slides were digested with 1% pepsin to remove
the excess of cytoplasm, treated with formaldehyde 1%, and
dehydrated in ethanol series (2x 2min 70%, 2x 2min 90%, and
1x 4min 100%). Subsequently the slides were aged overnight
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TABLE 2 | Chromosome homologies between G. carapo (2n = 42), G. carapo (2n = 40), G. capanema (2n = 34), and G. arapaima (2n = 44).

Region G. carapo chromosome G. capanema chromosome G. arapaima chromosome

GCA, 2n = 42a GCA, 2n = 40a GCP, 2n = 34b GAR, 2n = 44

R 1 20 20 15 19

R 2 1 1 5q + 9q 1

2 2 3qdist + 16 14qdist + 21

3 5qdist + 6 (p + qprox ) 2pdist + 12qdist + 13qprox 13qdist + 18

16 7q + 18 (p + qprox) 7q + 14 2 + 14qprox

R 3 [4, 8] 6qdist + 9q + 10 4qdist + 6p 5+ 20

6 11 8 4q + 16qint

7 8p + 9p 1qdist 3 + 16p

[5, 17] 4, 8q, 18qdist 9p + 11 + 12 (except qdist) 6 + 16q (except qint)

18 3p + 7p 1pprox + 2pprox + 4qprox 15

19 19 2qdist 7p + 22

R 4 9 14 7p + 3qprox 8

[10, 11] 5p + qprox, 12q 10 + 17 4p + 7q + 12

[12, 13, 15] 3q, 12p, 13, 16 1pdist + 2qprox + 6qdist 10 + 11 + 13 (p + qprox)

14 17 13p + 13qdist 9

21 15 6qprox + 1qprox 17

dist, distal; prox , proximal; int , interstitial.
aAccording to Nagamachi et al. (2010).
bAccording to Nagamachi et al. (2013).

at 37◦C. The probes were prepared following Nagamachi et al.
(2010), denatured for 15min at 70◦C and applied onto a slide
with chromosomes that were previously denatured at 70◦C for
4min in 70% formamide/2× SSC [pH 7.0]. The hybridization
lasted 72 h at 37◦C. The slides were washed once in a solution of
50% formamide/2× SSC, once in 2× SSC and once in 4× Tween,
5min each.

The dual-color FISH experiments were made with probes
that were either directly labeled or biotinylated detected with
avidin, (Vector Laboratories, Burlingame, CA, USA) linked to
Cy3 or FITC (Amersham, Piscataway, NJ, United States). DAPI
(4′,6-diamidino-2-phenylindole) was used as a counterstain.

Microscopy and Image Processing
Image acquisition was made using the software Nis-elements
in the microscope Nikon H550S. Chromosomes were
morphologically classified according to Levan et al. (1964).
The karyotype was organized according to Milhomem et al.
(2012b).

RESULTS

The whole chromosome probes from G. carapo were hybridized
to chromosomes of G. arapaima. The regions of homology
(hereafter designated as R1-4) obtained with GCA (2n = 42)
probes against the chromosomes of GAR are indicated on the
karyotype of GAR arranged from DAPI-stained chromosomes
(Figure 3). Dual color FISH with the probes of R3 (red)
and R4 (green) defined the chromosome groups in GAR that
corresponded to the four groups of regions in GCA (Figure 3),
as R3 and R4 do not share chromosome pairs. Any chromosome

segments hybridizing simultaneously with two colors indicate
repetitive DNA sequences that are common to both regions.
The chromosomes or segments in blue (DAPI) represent the
NOR-bearing chromosomes (R1, GCA20) and the chromosomes
corresponding to R2 (pairs 1–3 and 16). Table 2 shows the
correspondence of the GCA (2n = 42) chromosomes with the
previously published karyotypes of GCA (2n= 40) and GCP (2n
= 34), and GAR (2n= 44, present study).

From the 12 chromosome pairs of G. carapo that can be
individually differentiated (GCA 1–3, 6, 7, 9, 14, 16, and 18–21),
six pairs (GCA 1, 9, 14, 18, 20, 21) have conserved homology
within GAR. GCA 20 hybridizes to one whole chromosome, pair
19, as described by Milhomem et al. (2013). Six chromosome
pairs (GCA 2, 3, 6, 7, 16, and 19) show two signals on GAR
chromosomes.

The GCA probes that represent two chromosome pairs [4, 8]
revealed two signals, and pairs [10, 11] and [5, 17] revealed three
signals and the probe representing three pairs [12, 13, 15] also
revealed three signals on GAR chromosomes.

The following associations were found: GAR 4: [10, 11]/C/6,
GAR 7: 19/C/[10, 11], GAR 13: [12, 13, 15]/C/ [12, 13, 15]/∗/3,
GAR 14: ∗/C/16/∗/2, GAR 16: 7/C/ [5, 17]/6/ [5, 17] (where C =

centromere and ∗
= repetitive sequences).

DISCUSSION

Our results demonstrate that the genomic reorganization in the
analyzed species of Gymnotus is greater than that assumed by
classical cytogenetics (Milhomem et al., 2008, 2012a,b).

Whole chromosome probes from GCA 2n = 42 have been
used for comparative genomic mapping (CGM) of the karyotype
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FIGURE 3 | Haploid karyotype of G. arapaima (GAR) arranged from mitotic chromosomes after dual-color hybridization with probes derived from Region 3 (R3, red)

and Region 4 (R4, green) from the Gymnotus carapo (GCA) chromosome complement. Regions R1 and R2 were not subjected to FISH analysis and, therefore, the

equivalent homeologous parts on GAR chromosomes are DAPI-stained (blue) only. For each of the 22 GAR chromosome pairs, the DAPI-only stained homolog is

depicted on the left, while the dual-color FISH hybridization pattern is present on the right. The correspondence to G. carapo (GCA) homeologous chromosomes is

indicated by chromosome pair numbers on the left side of the DAPI-stained GAR chromosomes, while the correspondence to the particular GCA regions (R1–4) is

indicated on the right side of FISH-painted chromosomes. *Repetitive sequences.

of (i) cryptic species GCA 2n = 40 (Nagamachi et al., 2010), (ii)
GCP 2n = 34 (Nagamachi et al., 2013) and, in the present work,
iii) onto the karyotype of GAR 2n= 44 (Figure 4). Similar to the
observations in the two previously mapped species (Nagamachi
et al., 2010, 2013), GAR also presents a highly reorganized
karyotype (Figures 3, 4, Table 2) in relation to GCA 2n= 42 and
also in relation to GCA 2n = 40 and GCP 2n = 34. From the
12 chromosome pairs of GCA 2n = 42 that can be individually
differentiated (GCA 1–3, 6, 7, 9, 14, 16, 18–21), GAR shows
conserved synteny of six pairs (GCA 1, 9, 14, 18, 20, 21); five
pairs (GCA 1, 9, 14, 20, 21) with the cryptic species GCA 2n
= 40 and only one pair with GCP (GCA 20). On the other
hand, GCA 2n = 40 shares with GCA 2n = 42, eight pairs
(GCA 1, 2, 6, 9, 14, 19, 20, 21) and with GCP, three pairs
(GCA 6, 19, 20) (Figure 4). It is also worth noting that the
probes representing GCA [4, 8] and [12, 13, 15] show two and
three signals, respectively, in three species (GCA 42, GCP and
GAR) indicating that these chromosomesmay have retained their
homology.

A comparative analysis of the WCP data described above
shows that the karyotypes of both GCP and GAR are related
to the karyotypes of GCA. GCP, although part of the carapo
group (Milhomem et al., 2012a), has an uncertain position inside
the phylogeny of the clade, while GCA and GAR are closely
related. GCP and GAR do not share the same chromosome
rearrangements (Table 2), meaning that these rearrangements
must have occurred after their speciation. The results of the CGM
suggest either a divergence prior to that of GAR or a recent
divergence characterized by fast karyotype evolution and fixation
of a high number of chromosomal rearrangements.

It is also clear that the karyotype of GAR is evolutionary closer
to the GCA karyotype than to the GCP karyotype. However,
GAR is located 2000 km away from the other species, while GCP
and GCA (2n = 42) are 200 km apart (Figure 5). This might
suggest that the karyotypes of GCA and GAR are more conserved
while GCP changed over a shorter period of time. Another
explanation for this huge differentiation of the GCP karyotype
might lie in the fact that this species inhabits Rio Açaiteuazinho
drainage from Northeast Para, which is not connected with
the Amazon basin, while GCA and GAR are part of the same
hydrographic basin, despite the long distance between them
(Figure 5).

Freshwater fishes in general have a higher rate of
chromosomal rearrangements than marine fishes due to
the reduced flow with the natural barriers present in the
freshwater environment compared to the open marine biome,
with bigger populations and high potential for dispersion and
higher gene flow, reducing the chance for karyotype changes
to fixate in the population (Molina, 2007; Nirchio et al., 2014;
Artoni et al., 2015). Lande (1977) theorizes that the rates of
chromosomal rearrangement are proportional to selection and
inversely proportional to the effective size of the population
and Araya-Jaime et al. (2017) suggests that this could be
considered a general model of chromosomal evolution within
Gymnotiformes, since populations with little or no geneflow
may facilitate the fixation of chromosomal rearrangements
within a particular species in a shorter evolutionary time.
This may be a contributory factor to speciation within the
group and may also contribute to the higher number of
rearrangements found. It is a valid reminder that the high
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FIGURE 4 | Ideogram with the karyotypes of (A) G. carapo (2n = 42); (B) G. carapo (2n = 40); (C) G. capanema, and (D) G. arapaima. The numbers at the right side

of chromosomes in (B–D) show the homology with the karyotype (A) of G. carapo. Each color in the karyotypes (B–D) represents the correspondent chromosome

colored in (A). Chromosomes groups [4, 8]; [5, 17]; [10, 11], and [12, 13, 15] share the same color within each group.

FIGURE 5 | A map of Northern Brazil showing the geographical distribution of the samples from the four species of Gymnotus analyzed by whole chromosome

painting. G. carapo 2n = 42 (GCA1, Nagamachi et al., 2010, Santa Cruz do Arari, Marajo Island), G. carapo 2n = 40 (GCA2, Nagamachi et al., 2010, Almerim,

Amazon river drainage), G. capanema (GCP, Nagamachi et al., 2013, Capanema, Rio Açaiteuazinho drainage) and G. arapaima (GAR, present study, Mamirauá

Sustainable Development Reserve, Amazonas, Brazil).

Frontiers in Genetics | www.frontiersin.org 7 January 2018 | Volume 9 | Article 8

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Machado et al. Genomic Reorganization in Gymnotus arapaima

number of rearrangements observed in the present study was
possible through WCP, and groups with a more stable diploid
number and karyotypic formula potentially could have fixed
a higher number of rearrangements that did not cause major
structural changes.

As Region 3 was labeled with a red fluorochrome and Region
4 with a green one, all yellow regions in Figure 3 are the result
of hybridization of both probes to the same region. Although
R3 and R4 do not share the same chromosome pair, they share
the same or highly similar repetitive DNA. The hybridization
of both probes to the same regions of GAR chromosomes
confirms that this sequence is also present in this species. Since
repetitive sequences evolve quickly by concerted evolution
with significant differences between species (Pons and Gillespie,
2004), the presence of the highly similar repetitive DNA sequence
in different species clearly shows that these species diverged
recently, without sufficient time to accumulate sequence
differences. Despite the huge amount of rearrangement,
the repetitive DNA sequence strongly suggests that these
species diverged recently and also that the rearrangements
responsible for the karyotypic differences are also
recent.

Taken together, the sum of the results might explain
the difficulty in finding synapomorphies among the species
compared so far, since most of the rearrangements might have
become fixed after the species became isolated. On the other
hand, because the G. carapo clade is a derived one (Tagliacollo
et al., 2016, Figure 1) and because up until today there are
few species of Gymnotus studied by chromosome painting, we
currently cannot conclusively resolve whether the homologous
chromosomes present a symplesiomorphic or synapomorphic
character. An example is the NOR bearing pair that maps to GCA
20 using rDNA probes in species of the carapo group, but this
location is different in species outside this group (Milhomem
et al., 2013), which suggests that it is a synapomorphy. This
matter will be better understood once species outside the
carapo group are mapped with all the GCA whole chromosome
probes.

AUTHOR CONTRIBUTIONS

MM, JP, FS, PO, MF-S, and CN: gave substantial contributions
to the conception of the work; the acquisition, analysis, and
interpretation of data for the work; participated in the draft of
the work or revised it critically for important intellectual content;
gave final approval of the version to be published; and agreed
to be accountable for all aspects of the work in ensuring that
questions related to the accuracy or integrity of any part of the
work are appropriately investigated and resolved.

FUNDING

This research was supported by Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) through
the Edital Universal (Proc. 475013/2012-3) and Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES) through
the Edital 047/2012 PRÓ-AMAZÔNIA: Biodiversidade e
Sustentabilidade on a project coordinated by CYN; by Fundação
Amazônia Paraense de Amparo à Pesquisa (FAPESPA) through
the National Excellence on Research Program (PRONEX, TO
011/2008) and Banco Nacional de Desenvolvimento Econômico
e Social – BNDES (Operação 2.318.698.0001) on a project
coordinated by JP.

ACKNOWLEDGMENTS

This study is part of the Master Dissertation of MM who was
a recipient of a CAPES Scholarship in Genetics and Molecular
Biology, UFPA. CYN (308428/20013-7) and JP (308401/2013-1)
are grateful to CNPq for Productivity Grants. The authors are
grateful to members of the team of the cytogenetics laboratory
UFPA for the fieldwork and chromosomal preparations. To
MSc. Jorge Rissino, to MSc. Shirley Nascimento and Maria da
Conceição for assistance in laboratory work. We also thank
the Instituto Chico Mendes de Conservação da Biodiversidade
(ICMBio) for the collection permit 020/2005 (Registration:
207419).

REFERENCES

Albert, J. S. (2001). Species Diversity and Phylogenetic Systematics of American

Knifefishes (Gymnotiformes, Teleostei). Ann Arbor, MI: Miscellaneous
Publications. University of Michigan, 190, 1–129.

Albert, J. S., and Crampton, W. G. R. (2003). Seven new species of the neotropical
electric fish Gymnotus (Teleostei, Gymnotiformes) with a redescription of G.
carapo (Linnaeus). Zootaxa 287, 1–54. doi: 10.11646/zootaxa.287.1.1

Albert, J. S., Crampton, W. G. R., Thorsen, D. H., and
Lovejoy, N. R. (2005). Phylogenetic systematics and historical
biogeography of the neotropical electric fish Gymnotus (Teleostei:
Gymnotidae). Syst. Biodivers. 2, 375–417. doi: 10.1017/S14772000040
01574

Albert, J. S., de Campos Fernandes-Matioli, F. M., and de Almeida-Toledo,
L. F. (1999). New species of Gymnotus (Gymnotiformes, Teleostei) from
southeastern Brazil: toward the deconstruction of Gymnotus carapo. Copeia
1999, 410–421. doi: 10.2307/1447486

Almeida, J. S., Migues, V. H., Diniz, D., and Affonso, P. R. A. (2015). A
unique sex chromosome system in the knifefish Gymnotus bahianus with

inferences about chromosomal evolution of Gymnotidae. J. Hered. 106,
177–183. doi: 10.1093/jhered/esu087

Almeida-Toledo, L. F., Daniel-Silva, M. F. Z., Moyses, C. B., and Foresti, F. (2007).
“Chromosome variability in Gymnotiformes (Teleostei: Ostariophysi),” in Fish

Cytogenetics, eds E. Pisano, C. Ozouf-Costaz, F. Foresti, and B. G. Kapoor (Boca
Raton, FL: CRC Press), 16–39.

Almeida-Toledo, L. F., Foresti, F., and de Almeida-Toledo, S. (1981).
Constitutive heterochromatin and nucleolus organizer region in the knifefish,
Apteronotus albifrons (Pisces, Apteronotidae). Cell Mol. Life Sci. 37, 953–954.
doi: 10.1007/BF01971773

Araya-Jaime, C., Mateussi, N. T. B., Utsunomia, R., Costa-Silva, G. J., Oliveira,
C., and Foresti, F. (2017). ZZ/Z0: the new system of sex chromosomes
in Eigenmannia aff. trilineata (Teleostei: Gymnotiformes: Sternopygidae)
characterized by molecular cytogenetics and DNA barcoding. Zebrafish 14,
464–470. doi: 10.1089/zeb.2017.1422

Artoni, R. F., Castro, J. P., Jacobina, U. P., Lima-Filho, P. A., da Costa, G. W.
W. F., and Molina, W. F. (2015). Inferring diversity and evolution in fish
by means of integrative molecular cytogenetics, Sci. World J. 2015:365787.
doi: 10.1155/2015/365787

Frontiers in Genetics | www.frontiersin.org 8 January 2018 | Volume 9 | Article 8

https://doi.org/10.11646/zootaxa.287.1.1
https://doi.org/10.1017/S1477200004001574
https://doi.org/10.2307/1447486
https://doi.org/10.1093/jhered/esu087
https://doi.org/10.1007/BF01971773
https://doi.org/10.1089/zeb.2017.1422
https://doi.org/10.1155/2015/365787
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Machado et al. Genomic Reorganization in Gymnotus arapaima

Batista, J. A., Cardoso, A. L., Milhomem-Paixão, S. S. R., Ready, J. S., Pieczarka,
J. C., and Nagamachi, C. Y. (2017). The karyotype of Microsternarchus aff.
bilineatus: a first case of Y chromosome degeneration in Gymnotiformes.
Zebrafish 14, 244–250. doi: 10.1089/zeb.2016.1383

Cabral-de-Mello, D. C., and Martins, C. (2010). “Breaking down the genome
organization and karyotype differentiation through the epifluorescence
microscope lens: insects and fish as models,” in Formatex Microscopy, eds A.
Méndez-Vilas and J. Díaz (Badajoz: Formatex Research Center), 658–669.

Claro, F. L. (2008). Gymnotus Carapo and Gymnotus sylvius (Teleostei:

Gymnotidae): Uma Abordagem Citogenético-Molecular. Master’s dissertation.
São Paulo, SP: Universidade de São Paulo.

Craig, J., Crampton, W. G. R., and Albert, J. S. (2017). Revision of the polytypic
electric fish Gymnotus carapo (Gymnotiformes, Teleostei), with descriptions of
seven subspecies. Zootaxa 4318, 401–438. doi: 10.11646/zootaxa.4318.3.1

Crampton, W. G. R., Thorsen, D. H., and Albert, J. S. (2005). Three new
species from a diverse, sympatric assemblage of the electric fish Gymnotus

(Gymnotiformes, Gymnotidae) in the lowland Amazon basin, with notes on
ecology. Copeia 2005, 82–99. doi: 10.1643/CI-03-242R2

da Silva, M. (2015). Análise Biogeográfica do Gênero Gymnotus (Gymnotidae,

Gymnotiformes), Por Meio de Marcadores Cariotípicos e Moleculares.
Dissertation. Manaus, AM: Instituto Nacional de Pesquisas da Amazônia.

da Silva, M., Barbosa, P., Artoni, R. F., and Feldberg, E. (2016). Evolutionary
dynamics of 5S rDNA and recurrent association of transposable elements in
electric fish of the family Gymnotidae (Gymnotiformes): the case of Gymnotus

mamiraua. Cytogenet. Genome Res. 149, 297–303. doi: 10.1159/000449431
da Silva, M., Matoso, D. A., Artoni, R. F., and Feldberg, E. (2014). New

approach data in electric fish (Teleostei: Gymnotus): sex chromosome
evolution and repetitive DNA. Zebrafish 11, 528–535. doi: 10.1089/zeb.
2013.0966

da Silva, M., Matoso, D. A., Vicari, M. R., de Almeida, M. C., Margarido, V. P., and
Artoni, R. F. (2011). Physical mapping of 5S rDNA in two species of knifefishes:
Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes). Cytogenet.
Genome Res. 134, 303–307. doi: 10.1159/000328998

da Silva, P. C., Nagamachi, C. Y., Silva, D. S., Milhomem, S. S. R., Cardoso, A. L.,
de Oliveira, J. A., et al. (2013). Karyotypic similarities between two species of
Rhamphichthys (Rhamphichthyidae, Gymnotiformes) from the Amazon basin.
Comp. Cytogenet. 7:279. doi: 10.3897/compcytogen.v7i4.4366

Fernandes, C. A., Paiz, L. M., Baumgärtner, L., Margarido, V. P., and Vieira,
M. M. D. R. (2017). Comparative cytogenetics of the black ghost knifefish
(Gymnotiformes: Apteronotidae): evidence of chromosomal fusion and
pericentric inversions in karyotypes of two Apteronotus species. Zebrafish 14,
471–476. doi: 10.1089/zeb.2017.1432

Fernandes, F. M., Albert, J. S., Daniel-Silva, M. D., Lopes, C. E., Crampton,
W. G., and Almeida-Toledo, L. F. (2005). A new Gymnotus (Teleostei:
Gymnotiformes: Gymnotidae) from the Pantanal Matogrossense of Brazil and
adjacent drainages: continued documentation of a cryptic fauna. Zootaxa 933,
1–14. doi: 10.11646/zootaxa.933.1.1

Fernandes-Matioli, F. M. C., Marchetto, M. C. N., Almeida-Toledo, L. F., and
Toledo-Filho, S. A. (1998). High intraspecific karyological conservation in
four species of Gymnotus (Pisces: Gymnotiformes) from southeastern brazilian
basins. Caryologia 51, 221–234. doi: 10.1080/00087114.1998.10797414

Ferraris, C. J. Jr., de Santana, C. D., and Vari, R. P. (2017). Checklist of
Gymnotiformes (Osteichthyes: Ostariophysi) and catalogue of primary types.
Neotrop. Ichthyol. 15:e160067. doi: 10.1590/1982-0224-20160067

Foresti, F., de Almeida Toledo, L. F., and de Almeida Toledo, F. S. (1984).
Chromosome studies in Gymnotus carapo and Gymnotus sp. (Pisces,
Gymnotidae). Caryologia 37, 141–146. doi: 10.1080/00087114.1984.10797693

Gornung, E. (2013). Twenty years of physical mapping of major ribosomal RNA
genes across the teleosts, a review of research. Cytogenet. Genome Res. 141,
90–102. doi: 10.1159/000354832

Henning, F., Moysés, C. B., Calcagnotto, D., Meyer, A., and de Almeida-Toledo, L.
F. (2011). Independent fusions and recent origins of sex chromosomes in the
evolution and diversification of glass knife fishes (Eigenmannia). Heredity 106,
391–400. doi: 10.1038/hdy.2010.82

Henning, F., Trifonov, V., Ferguson-Smith, M. A., and de Almeida-Toledo, L.
F. (2008). Non-homologous sex chromosomes in two species of the genus
Eigenmannia (Teleostei: Gymnotiformes). Cytogenet. Genome Res. 121:55.
doi: 10.1159/000124382

Howell, W. M. (1972). Somatic chromosomes of the black ghost knifefish,
Apteronotus albifrons (Pisces: Apteronotidae). Copeia 1972, 191–193.
doi: 10.2307/1442803

Jesus, I. S., Ferreira, M., Garcia, C., Ribeiro, L. B., Alves-Gomes, J. A.,
and Feldberg, E. (2016). First cytogenetic description of Microsternarchus
bilineatus (Gymnotiformes: Hypopomidae) from Negro river (Brazilian
Amazon). Zebrafish 13, 571–577. doi: 10.1089/zeb.2016.1281

Knytl, M., Kalous, L., Symonová, R., Rylková, K., and Ráb, P. (2013). Chromosome
studies of European cyprinid fishes: cross-species painting reveals natural
allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet.
Genome Res. 139, 276–283. doi: 10.1159/000350689

Lacerda, M. C. V., and Maistro, E. L. (2007). Cytogenetic analysis of three
sympatric Gymnotus species (Teleostei: Gymnotidae) from the Fundo stream,
MG, Brazil. Cytologia 72, 89–93. doi: 10.1508/cytologia.72.89

Lande, R. (1977). On comparing coefficients of variation. Syst. Zool. 26, 214–217.
doi: 10.2307/2412845

Levan, A., Fredga, K., and Sandberg, A. A. (1964). Nomenclature
for centromeric position on chromosomes. Hereditas 52, 201–220.
doi: 10.1111/j.1601-5223.1964.tb01953.x

Lovejoy, N. R., Lester, K., Crampton, W. G. R., Marques, F. P., and Albert,
J. S. (2010). Phylogeny, biogeography, and electric signal evolution of
neotropical knifefishes of the genus Gymnotus (Osteichthyes: Gymnotidae).
Mol. Phylogenet. Evol. 54, 278–290. doi: 10.1016/j.ympev.2009.09.017

Machado, M. A., Cardoso, A. L., Milhomem-Paixão, S. S. R., Pieczarka, J. C.,
and Nagamachi, C. Y. (2017). Gymnotus coatesi (Gymnotiformes): a case of
colocation of multiple sites of 18S rDNA with telomeric sequences. Zebrafish
14, 459–463. doi: 10.1089/zeb.2017.1435

Margarido, V. P., Bellafronte, E., and Moreira-Filho, O. (2007). Cytogenetic
analysis of three sympatric Gymnotus (Gymnotiformes,Gymnotidae) species
verifies invasive species in the Upper Parana river basin, Brazil. J. Fish Biol. 70,
155–164. doi: 10.1111/j.1095-8649.2007.01365.x

Martins, C., Cabral-de-Melo, D. C., Targino, G. V., Mazzuchelli, J., and Oliveira, S.
G. (2011). “Cytogenetic mapping and contribution to the knowledge of animal
genomes,” inAdvances in Genetics Research,Vol. 4, ed K. V. Urbano (NewYork,
NY: Nova Science Publisher), 1–82.

Mendes, V. P., Portela-Castro, A. L. B., and Júlio-Júnior, H. F. (2012). First record
of supernumerary (B) chromosomes in electric fish (Gymnotiformes) and the
karyotype structure of three species of the same order from the upper Paraná
River basin. Comp. Cytogenet. 6, 1–16. doi: 10.3897/compcytogen.v6i1.1752

Milhomem, S. S. R., Crampton, W. G. R., Pieczarka, J. C., Shetka, G. H.,
Silva, D. S., and Nagamachi, C. Y. (2012a). Gymnotus capanema, a new
species of electric knife fish (Gymnotiformes, Gymnotidae) from eastern
Amazonia, with comments on an unusual karyotype. J. Fish Biol. 80, 802–815.
doi: 10.1111/j.1095-8649.2012.03219.x

Milhomem, S. S. R., Crampton, W. G. R., Pieczarka, J. C., Silva, D. S., Cardoso,
A. L., da Silva, P. C., et al. (2012b). Chromosomal and electric signal
diversity in three sympatric electric knifefish species (Gymnotus, Gymnotidae)
from the central Amazon floodplain. Rev. Fish Biol. Fisher. 22, 485–497.
doi: 10.1007/s11160-011-9239-1

Milhomem, S. S. R., Pieczarka, J. C., Crampton, W. G. R., Silva, D. S., Souza,
A. C. P., Carvalho, J. R., et al. (2008). Chromosomal evidence for a putative
cryptic species in the Gymnotus carapo species-complex (Gymnotiformes,
Gymnotidae). BMC Genet. 9:75. doi: 10.1186/1471-2156-9-75

Milhomem, S. S. R., Pieczarka, J. C., Crampton, W. G. R., Souza, A. C. P., Carvalho
Jr, J. R., and Nagamachi, C. Y. (2007). Differences in karyotype between
two sympatric species of Gymnotus (Gymnotiformes: Gymnotidae) from the
eastern amazon of Brazil. Zootaxa 1397, 55–62. doi: 10.11646/zootaxa.1397.7

Milhomem, S. S. R., Scacchetti, P. C., Pieczarka, J. C., Ferguson-Smith, M. A.,
Pansonato-Alves, J. C., O’Brien, P. C. M., et al. (2013). Are NORs always
located on homeologous chromosomes? A FISH investigation with rDNA and
whole chromosome probes in Gymnotus fishes (Gymnotiformes). PLoS ONE

8:e55608. doi: 10.1371/journal.pone.0055608
Molina, W. F. (2007). “Chromosome changes and stasis in marine fish groups,” in

Fish Cytogenetic, eds E. Pisano, C. Ozouf-Costaz, F. Foresti, and B. G. Kapoor
(Boca Raton, FL: CRC Press), 69–110.

Nagamachi, C. Y., Pieczarka, J. C., Milhomem, S. S. R., Batista, J. A.,
O’Brien, P. C. M., and Ferguson-Smith, M. A. (2013). Chromosome painting
reveals multiple rearrangements between Gymnotus capanema and Gymnotus

Frontiers in Genetics | www.frontiersin.org 9 January 2018 | Volume 9 | Article 8

https://doi.org/10.1089/zeb.2016.1383
https://doi.org/10.11646/zootaxa.4318.3.1
https://doi.org/10.1643/CI-03-242R2
https://doi.org/10.1159/000449431
https://doi.org/10.1089/zeb.2013.0966
https://doi.org/10.1159/000328998
https://doi.org/10.3897/compcytogen.v7i4.4366
https://doi.org/10.1089/zeb.2017.1432
https://doi.org/10.11646/zootaxa.933.1.1
https://doi.org/10.1080/00087114.1998.10797414
https://doi.org/10.1590/1982-0224-20160067
https://doi.org/10.1080/00087114.1984.10797693
https://doi.org/10.1159/000354832
https://doi.org/10.1038/hdy.2010.82
https://doi.org/10.1159/000124382
https://doi.org/10.2307/1442803
https://doi.org/10.1089/zeb.2016.1281
https://doi.org/10.1159/000350689
https://doi.org/10.1508/cytologia.72.89
https://doi.org/10.2307/2412845
https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
https://doi.org/10.1016/j.ympev.2009.09.017
https://doi.org/10.1089/zeb.2017.1435
https://doi.org/10.1111/j.1095-8649.2007.01365.x
https://doi.org/10.3897/compcytogen.v6i1.1752
https://doi.org/10.1111/j.1095-8649.2012.03219.x
https://doi.org/10.1007/s11160-011-9239-1
https://doi.org/10.1186/1471-2156-9-75
https://doi.org/10.11646/zootaxa.1397.7
https://doi.org/10.1371/journal.pone.0055608
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Machado et al. Genomic Reorganization in Gymnotus arapaima

carapo (Gymnotidae, Gymnotiformes). Cytogenet. Genome Res. 141, 163–168.
doi: 10.1159/000354988

Nagamachi, C. Y., Pieczarka, J. C., Milhomem, S. S. R., O’Brien, P. C. M.,
Souza, A. C. P., and Ferguson-Smith, M. A. (2010). Multiple rearrangements
in cryptic species of electric knifefish, Gymnotus carapo (Gymnotidae,
Gymnotiformes) revealed by chromosome painting. BMC Genet. 11:1.
doi: 10.1186/1471-2156-11-28

Nirchio, M., Rossi, A. R., Foresti, F., and Oliveira, C. (2014). Chromosome
evolution in fishes: a new challenging proposal from Neotropical species.
Neotrop. Ichthyol. 12, 761–770. doi: 10.1590/1982-0224-20130008

Pons, J., and Gillespie, R. G. (2004). Evolution of satellite DNAs in a
radiation of endemic hawaiian spiders: does concerted evolution of highly
repetitive sequences reflect evolutionary history? J. Mol. Evol. 59, 632–641.
doi: 10.1007/s00239-004-2655-2

Scacchetti, P., Pansonato-Alves, J., Utsunomia, R., Oliveira, C., and Foresti,
F. (2011). Karyotypic diversity in four species of the genus Gymnotus

Linnaeus, 1758 (Teleostei, Gymnotiformes, Gymnotidae): physical mapping
of ribosomal genes and telomeric sequences. Comp. Cytogenet. 5:223.
doi: 10.3897/compcytogen.v5i3.1375

Silva, D. S., Milhomem, S. S. R., Pieczarka, J. C., and Nagamachi, C.
Y. (2009). Cytogenetic studies in Eigenmannia virescens (Sternopygidae,
Gymnotiformes) and new inferences on the origin of sex chromosomes in the
Eigenmannia genus. BMC Genet. 10:74. doi: 10.1186/1471-2156-10-74

Sousa, T. P., Marques, D. K. S., Vitorino, C. D. A., Faria, K. D. C., Braga, G. D.
S. F., Ferreira, D. C., et al. (2017). Cytogenetic and molecular data Support the
occurrence of three Gymnotus species (Gymnotiformes: Gymnotidae) used as
live bait in Corumbá, Brazil: implications for conservation and management of
professional fishing. Zebrafish 14, 177–186. doi: 10.1089/zeb.2016.1356

Suárez, P., Barroso, I. C. G. P., Silva, D. S., Milhomem, S. S. R., Cabral-de-Mello, D.
C., Martins, C., et al. (2017). Highest diploid number among Gymnotiformes:
first cytogenetic insights into Rhabdolichops (Sternopygidae). Zebrafish 14,
272–279. doi: 10.1089/zeb.2016.1405

Tagliacollo, V. A., Bernt, M. J., Craig, J. M., Oliveira, C., and Albert, J.
S. (2016). Model-based total evidence phylogeny of neotropical electric
knifefishes (Teleostei, Gymnotiformes). Mol. Phylogenet. Evol. 95, 20–33.
doi: 10.1016/j.ympev.2015.11.007

Takagui, F. H., da Rosa, R., Shibatta, O. A., and Giuliano-Caetano, L.
(2017). Chromosomal similarity between two species of Apteronotus albifrons

complex (Apteronotidae–Gymnotiformes) implications in cytotaxonomy and
karyotypic evolution. Caryologia 70, 1–4. doi: 10.1080/00087114.2017.13
06385

Utsunomia, R., Scacchetti, P. C., Pansonato-Alves, J. C., Oliveira, C., and Foresti, F.
(2014). Comparative chromosome mapping of U2 snRNA and 5S rRNA genes
in Gymnotus species (Gymnotiformes, Gymnotidae): evolutionary dynamics
and sex chromosome linkage in G. pantanal. Cytogenet. Genome Res. 142,
286–292. doi: 10.1159/000362258

Vicari, M. R., de Mello Pistune, H. F., Castro, J. P., de Almeida, M. C., Bertollo,
L. A. C., Moreira-Filho, O., et al. (2011). New insights on the origin of B
chromosomes in Astyanax scabripinnis obtained by chromosome painting and
FISH. Genetica 139, 1073–1081. doi: 10.1007/s10709-011-9611-z

Yang, F., Carter, N. P., Shi, L., and Ferguson-Smith, M. A. (1995). A comparative
study of karyotypes of muntjacs by chromosome painting. Chromosoma 103,
642–652. doi: 10.1007/BF00357691

Yang, F., and Graphodatsky, A. S. (2017). “Animal probes and ZOO-FISH,” in
Fluorescence in situ Hybridization (FISH) Application Guide, ed T. Liehr (Berlin;
Heidelberg: Springer-Verlag), 395–415.

Yano, C. F., Bertollo, L. A. C., and Cioffi, M. D. B. (2017). “Fish-FISH:
molecular cytogenetics in fish species,” in Fluorescence In Situ Hybridization

(FISH) Application Guide, ed T. Liehr (Berlin; Heidelberg: Springer-Verlag),
429–443.

Yi, M. S., Li, Y. Q., Liu, J. D., Zhou, L., Yu, Q. X., and Gui, J. F. (2003). Molecular
cytogenetic detection of paternal chromosome fragments in allogynogenetic
gibel carp, Carassius auratus gibelio Bloch. Chromosome Res. 11, 665–671.
doi: 10.1023/A:1025985625706

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Machado, Pieczarka, Silva, O’Brien, Ferguson-Smith and

Nagamachi. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 January 2018 | Volume 9 | Article 8

https://doi.org/10.1159/000354988
https://doi.org/10.1186/1471-2156-11-28
https://doi.org/10.1590/1982-0224-20130008
https://doi.org/10.1007/s00239-004-2655-2
https://doi.org/10.3897/compcytogen.v5i3.1375
https://doi.org/10.1186/1471-2156-10-74
https://doi.org/10.1089/zeb.2016.1356
https://doi.org/10.1089/zeb.2016.1405
https://doi.org/10.1016/j.ympev.2015.11.007
https://doi.org/10.1080/00087114.2017.1306385
https://doi.org/10.1159/000362258
https://doi.org/10.1007/s10709-011-9611-z
https://doi.org/10.1007/BF00357691
https://doi.org/10.1023/A:1025985625706
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Extensive Karyotype Reorganization in the Fish Gymnotus arapaima (Gymnotiformes, Gymnotidae) Highlighted by Zoo-FISH Analysis
	Introduction
	Materials and Methods
	Sampling
	WCP
	FISH
	Microscopy and Image Processing

	Results
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


