8 research outputs found

    Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management

    Get PDF
    Taxonomic status: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range: Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties: Xcc is a rod-shaped (1.5–2.0 X 0.5–0.75 mm), Gram-negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution: Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe.EEA Bella VistaFil: Ference, Christopher M. United States Department of Agriculture. Agricultural Research Service. US Horticultural Research Laboratory; Estados Unidos. University of Florida. Department of Plant Pathology; Estados UnidosFil: Gochez, Alberto Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bella Vista; ArgentinaFil: Behlau, Franklin. Fundo de Defesa da Citricultura. Pesquisa e Desenvolvimento; BrasilFil: Wang, Nian. University of Florida. Citrus Research and Education Center. Department of Microbiology and Cell Science; Estados UnidosFil: Graham, James H. University of Florida. Citrus Research and Education Center. Department of Soil and Water Science; Estados UnidosFil: Jones, Jeffrey B. University of Florida. Department of Plant Pathology; Estados Unido

    Differential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile:Review, Synthesis and Recommendations

    Get PDF
    There is a direct relationship between chronically elevated cholesterol levels (dyslipidaemia) and coronary heart disease. A reduction in total cholesterol is considered the gold standard in preventative cardiovascular medicine. Exercise has been shown to have positive impacts on the pathogenesis, symptomatology and physical fitness of individuals with dyslipidaemia, and to reduce cholesterol levels. The optimal mode, frequency, intensity and duration of exercise for improvement of cholesterol levels are, however, yet to be identified. This review assesses the evidence from 13 published investigations and two review articles that have addressed the effects of aerobic exercise, resistance training and combined aerobic and resistance training on cholesterol levels and the lipid profile. The data included in this review confirm the beneficial effects of regular activity on cholesterol levels and describe the impacts of differing volumes and intensities of exercise upon different types of cholesterol. Evidence-based exercise recommendations are presented, aimed at facilitating the prescription and delivery of interventions in order to optimize cholesterol levels

    Genome-Wide Study of Gene Variants Associated with Differential Cardiovascular Event Reduction by Pravastatin Therapy

    Get PDF
    Statin therapy reduces the risk of coronary heart disease (CHD), however, the person-to-person variability in response to statin therapy is not well understood. We have investigated the effect of genetic variation on the reduction of CHD events by pravastatin. First, we conducted a genome-wide association study of 682 CHD cases from the Cholesterol and Recurrent Events (CARE) trial and 383 CHD cases from the West of Scotland Coronary Prevention Study (WOSCOPS), two randomized, placebo-controlled studies of pravastatin. In a combined case-only analysis, 79 single nucleotide polymorphisms (SNPs) were associated with differential CHD event reduction by pravastatin according to genotype (P<0.0001), and these SNPs were analyzed in a second stage that included cases as well as non-cases from CARE and WOSCOPS and patients from the PROspective Study of Pravastatin in the Elderly at Risk/PHArmacogenomic study of Statins in the Elderly at risk for cardiovascular disease (PROSPER/PHASE), a randomized placebo controlled study of pravastatin in the elderly. We found that one of these SNPs (rs13279522) was associated with differential CHD event reduction by pravastatin therapy in all 3 studies: P = 0.002 in CARE, P = 0.01 in WOSCOPS, P = 0.002 in PROSPER/PHASE. In a combined analysis of CARE, WOSCOPS, and PROSPER/PHASE, the hazard ratio for CHD when comparing pravastatin with placebo decreased by a factor of 0.63 (95% CI: 0.52 to 0.75) for each extra copy of the minor allele (P = 4.8×10−7). This SNP is located in DnaJ homolog subfamily C member 5B (DNAJC5B) and merits investigation in additional randomized studies of pravastatin and other statins

    Mendelian randomization of blood lipids for coronary heart disease

    Get PDF
    Aims To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization. Methods and results We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 × 10−6); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P ≤ 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95% CI: 1.24, 2.11 and 1.61; 95% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95% CI: 0.59, 1.75). Conclusion The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.M.V.H. was funded by a UK Medical Research Council Population Health Scientist Fellowship (G0802432). F.W.A. is supported by UCL Hospitals NIHR Biomedical Research Centre. D.I.S. is supported by a Medical Research Council Doctoral Training Award and a grant from the Rosetrees Foundation. ME.K. is supported by the National Institute of Aging and the National Heart, Lung and Blood Institute (HL36310). S.E.H. and P.J.T. are supported by the British Heart Foundation (BHF RG 08/008, PG/07/133/24260), UK Medical Research Council, the US National Institutes of Health (grant NHLBI 33014) and Du Pont Pharma, Wilmington, USA. N.J.S. holds a Chair funded by the British Heart Foundation and is an NIHR Senior Investigator. MI.K. is supported by the National Institute of Aging, the Medical Research Council, the British Heart Foundation, and the National Heart, Lung and Blood Institute and the Academy of Finland. A.D.H. and J.P.C. are supported by the National Institute of Health Research University College London Hospitals Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by RCUK

    SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions

    No full text
    The aim of this study was to derive and validate the SCORE2-Older Persons (SCORE2-OP) risk model to estimate 5- and 10-year risk of cardiovascular disease (CVD) in individuals aged over 70 years in four geographical risk regions. Methods and results: Sex-specific competing risk-adjusted models for estimating CVD risk (CVD mortality, myocardial infarction, or stroke) were derived in individuals aged over 65 without pre-existing atherosclerotic CVD from the Cohort of Norway (28 503 individuals, 10 089 CVD events). Models included age, smoking status, diabetes, systolic blood pressure, and total- and high-density lipoprotein cholesterol. Four geographical risk regions were defined based on country-specific CVD mortality rates. Models were recalibrated to each region using region-specific estimated CVD incidence rates and risk factor distributions. For external validation, we analysed data from 6 additional study populations {338 615 individuals, 33 219 CVD validation cohorts, C-indices ranged between 0.63 [95% confidence interval (CI) 0.61-0.65] and 0.67 (0.64-0.69)}. Regional calibration of expected-vs.-observed risks was satisfactory. For given risk factor profiles, there was substantial variation across the four risk regions in the estimated 10-year CVD event risk. Conclusions: The competing risk-adjusted SCORE2-OP model was derived, recalibrated, and externally validated to estimate 5- and 10-year CVD risk in older adults (aged 70 years or older) in four geographical risk regions. These models can be used for communicating the risk of CVD and potential benefit from risk factor treatment and may facilitate shared decision-making between clinicians and patients in CVD risk management in older persons

    SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions

    No full text
    The aim of this study was to derive and validate the SCORE2-Older Persons (SCORE2-OP) risk model to estimate 5- and 10-year risk of cardiovascular disease (CVD) in individuals aged over 70 years in four geographical risk regions. Methods and results: Sex-specific competing risk-adjusted models for estimating CVD risk (CVD mortality, myocardial infarction, or stroke) were derived in individuals aged over 65 without pre-existing atherosclerotic CVD from the Cohort of Norway (28 503 individuals, 10 089 CVD events). Models included age, smoking status, diabetes, systolic blood pressure, and total- and high-density lipoprotein cholesterol. Four geographical risk regions were defined based on country-specific CVD mortality rates. Models were recalibrated to each region using region-specific estimated CVD incidence rates and risk factor distributions. For external validation, we analysed data from 6 additional study populations {338 615 individuals, 33 219 CVD validation cohorts, C-indices ranged between 0.63 [95% confidence interval (CI) 0.61-0.65] and 0.67 (0.64-0.69)}. Regional calibration of expected-vs.-observed risks was satisfactory. For given risk factor profiles, there was substantial variation across the four risk regions in the estimated 10-year CVD event risk. Conclusions: The competing risk-adjusted SCORE2-OP model was derived, recalibrated, and externally validated to estimate 5- and 10-year CVD risk in older adults (aged 70 years or older) in four geographical risk regions. These models can be used for communicating the risk of CVD and potential benefit from risk factor treatment and may facilitate shared decision-making between clinicians and patients in CVD risk management in older persons
    corecore