175 research outputs found
Status and Social Evaluation towards Beggars in Bangladesh: Context of Sylhet City
Beggary is an important social phenomenon and one of the major social problems for all over the developed, underdeveloped and developing countries in the world. Bangladesh is a developing country in the South Asia, affected by the beggary problem due to the poor socio-economic conditions, poverty, lack of working opportunities etc. Sylhet city is an important city in Bangladesh as natural resource and foreign remittance are important part in the national economy, but is not free from beggary problems. Among the beggarâs family more than 60% are involved in begging due to low income (Taka 1000-3000/$12.8-38.5- 14.3%) and inadequate property (62.86%) as such as- land, deposit money, investment and other exchangeable assets etc. to make-up the imbalance of monthly income and expenditure. This is why their family are incapable to maintain all the essential needs which push them to involve in beggary and various starve (74.29%) in their family life
Corneal nerve fractal dimension: a novel corneal nerve metric for the diagnosis of diabetic sensorimotor polyneuropathy
Objective: Corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, is a noninvasive and objective imaging biomarker for identifying small nerve fiber damage. We have evaluated the diagnostic performance of previously established CCM parameters to a novel automated measure of corneal nerve complexity called the corneal nerve fiber fractal dimension (ACNFrD).
Methods: A total of 176 subjects (84 controls and 92 patients with type 1 diabetes) with and without diabetic sensorimotor polyneuropathy (DSPN) underwent CCM. Fractal dimension analysis was performed on CCM images using purpose-built corneal nerve analysis software, and compared with previously established manual and automated corneal nerve fiber measurements.
Results: Manual and automated subbasal corneal nerve fiber density (CNFD) (P < 0.0001), length (CNFL) (P < 0.0001), branch density (CNBD) (P < 0.05), and ACNFrD (P < 0.0001) were significantly reduced in patients with DSPN compared to patients without DSPN. The areas under the receiver operating characteristic curves for identifying DSPN were comparable: 0.77 for automated CNFD, 0.74 for automated CNFL, 0.69 for automated CNBD, and 0.74 for automated ACNFrD.
Conclusions: ACNFrD shows comparable diagnostic efficiency to identify diabetic patients with and without DSPN
SKIN ADVANCED GLYCATION END PRODUCTS (AGES), RAGE AND GLYOXALASE-I (GLO-I) ARE ASSOCIATED WITH DIABETIC NEUROPATHY IN PATIENTS WITH TYPE 1 DIABETES MELLITUS
Introduction: Advanced Glycation End Products (AGEs), their receptor (RAGE) and their detoxifying enzyme Glyoxalase-I (GLO-I) have been implicated in the development of experimental diabetic peripheral neuropathy (DPN). However, few studies have assessed their role in the tissues of diabetic patients.
Aim: We have assessed the relationship between skin expression of AGEs, RAGE, GLO-I and diabetic neuropathy in patients with type 1 diabetes.
Materials and Methods: Sixty-two patients with type 1 diabetes mellitus (16 with and 46 without DPN) and 30 age-matched control subjects underwent detailed assessment of neurologic deficits, quantitative sensory testing, electrophysiology, corneal confocal microscopy (CCM) , intraepidermal nerve fibre density (IENFD) and AGEs, RAGE and GLO1-I expression in foot skin biopsies.
Results: Skin AGEs and RAGE expression was significantly higher and GLO-I was significantly lower in the epidermis, microvessels and reticular extracellular matrix ofpatients with diabetic neuropathy as compared to diabetic patients without neuropathy and control subjects.Skin AGEs and RAGE expression was also moderately but significantly increased and GLO-I expression was decreased in some skin structures in patients without diabetic neuropathy as compared to control subjects. Skin AGEs and RAGE expression correlated negatively and GLO-I expression correlated positively with sural nerve amplitude and velocity, IENFD and corneal nerve pathology.
Conclusion: These findings suggest that AGEs, RAGE and GLO-I may play an important role in the etiology of human diabetic neuropathy
Small nerve fiber damage and Langerhans cells in type 1 and type 2 diabetes and LADA measured by corneal confocal microscopy
Purpose: Increased corneal and epidermal Langerhans cells (LCs) have been reported in patients with diabetic neuropathy. The aim of this study was to quantify the density of LCs in relation to corneal nerve morphology and the presence of diabetic neuropathy and to determine if this differed in patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and latent autoimmune diabetes of adults (LADA). Methods: Patients with T1DM (n = 25), T2DM (n = 36), or LADA (n = 23) and control subjects (n = 23) underwent detailed assessment of peripheral neuropathy and corneal confocal microscopy. Corneal nerve fiber density (CNFD), branch density (CNBD), length (CNFL) and total, immature and mature LC densities were quantified. Results: Lower CNFD (P < 0.001), CNBD (P < 0.0001), and CNFL (P < 0.0001) and higher LC density (P = 0.03) were detected in patients with T1DM, T2DM, and LADA compared to controls. CNBD was inversely correlated with mature (r = -0.5; P = 0.008), immature (r = -0.4; P = 0.02) and total (r = -0.5; P = 0.01) LC density, and CNFL was inversely correlated with immature LC density (r = -0.4; P = 0.03) in patients with T1DM but not in patients with T2DM and LADA. Conclusions: This study shows significant corneal nerve loss and an increase in LC density in patients with T1DM, T2DM, and LADA. Furthermore, increased LC density correlated with corneal nerve loss in patients with T1DM
Small nerve fibre quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fibre density
OBJECTIVE: Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard.
RESEARCH DESIGN AND METHODS: Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy.
RESULTS: Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14).
CONCLUSIONS: This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN
Storm time polar cap expansion: interplanetary magnetic field clock angle dependence
It is well known that the polar cap, delineated by the openâclosed field line boundary (OCB),
responds to changes in the interplanetary magnetic field (IMF).
In general, the boundary moves equatorward when the IMF turns southward and contracts
poleward when the IMF turns northward. However,
observations of the OCB are spotty and limited in local time,
making more detailed studies of its IMF dependence difficult.
Here, we simulate five solar storm periods with the coupled model consisting of the Open
Geospace General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere
Model (CTIM) and the Rice Convection Model (RCM),
i.e., the OpenGGCM-CTIM-RCM, to estimate the location and dynamics of the OCB.
For these events, polar cap boundary location observations are also obtained from Defense Meteorological
Satellite Program (DMSP) precipitation spectrograms and compared with the model output.
There is a large scatter in the DMSP observations and in the model output.
Although the model does not predict the OCB with high fidelity for every observation,
it does reproduce the general trend as a function of IMF clock angle.
On average, the model overestimates the latitude of the openâclosed field line boundary
by 1.61â. Additional analysis of the simulated polar cap boundary dynamics across
all local times shows that the MLT of the largest polar cap expansion closely correlates
with the IMF clock angle, that the strongest correlation occurs when the IMF is southward, that
during strong southward IMF the polar cap shifts sunward, and that the polar cap rapidly
contracts at all local times when the IMF turns northward.</p
Diagnosing and managing diabetic somatic and autonomic neuropathy
The diagnosis and management of diabetic neuropathy can be a major challenge. Late diagnosis contributes to significant morbidity in the form of painful diabetic neuropathy, foot ulceration, amputation, and increased mortality. Both hyperglycaemia and cardiovascular risk factors are implicated in the development of somatic and autonomic neuropathy and an improvement in these risk factors can reduce their rate of development and progression. There are currently no US Food and Drug Administration (FDA)-approved disease-modifying treatments for either somatic or autonomic neuropathy, as a consequence of multiple failed phase III clinical trials. While this may be partly attributed to premature translation, there are major shortcomings in trial design and outcome measures. There are a limited number of partially effective FDA-approved treatments for the symptomatic relief of painful diabetic neuropathy and autonomic neuropathy
Corneal Confocal Microscopy Identifies Parkinson's Disease with More Rapid Motor Progression
From Wiley via Jisc Publications RouterHistory: received 2020-12-15, rev-recd 2021-03-11, accepted 2021-03-12, pub-electronic 2021-04-07, pub-print 2021-08Article version: VoRPublication status: PublishedFunder: Michael J Fox Foundation Trust (Grant ID 12059); Id: http://dx.doi.org/10.13039/100010269ABSTRACT: Background: Corneal confocal microscopy (CCM) is a noninvasive, reproducible ophthalmic technique to quantify corneal small nerve fiber degeneration. CCM demonstrates small nerve fiber damage in Parkinson's disease (PD), but its role as a longitudinal biomarker of PD progression has not been explored. Objective: The aim of this study was to assess corneal nerve morphology using CCM in relation to disease progression in PD. Methods: Sixtyâfour participants with PD were assessed at baseline and at 12âmonth followâup. Participants underwent CCM with automated corneal nerve quantification and assessment of Movement Disorder Society Unified Parkinson's Disease Rating Scale, Hoehn and Yahr stage, and Montreal Cognitive Assessment. Results: Corneal nerve fiber density (CNFD), corneal nerve branch density, corneal nerve fiber length, corneal total branch density, and corneal nerve fiber area were significantly lower in participants with PD compared with healthy control subjects. Worsening of Movement Disorder Society Unified Parkinson's Disease Rating Scale part III score over 12 months was significantly greater in participants with a CNFD in the lowest compared with the highest quartile at baseline (mean difference: 6.0; 95% CI: 1.0â10.9; P = 0.019). There were no significant changes in CNFD, corneal nerve branch density, corneal nerve fiber length, corneal total branch density, corneal nerve fiber area, or corneal nerve fiber width between baseline and 12âmonth followâup. Conclusions: CCM identifies neurodegeneration in patients with PD, especially those who show the greatest progression in neurological disability. CCM may be a useful tool to help enrich clinical trials with those likely to exhibit more rapid progression and reduce required sample size and cost of studies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Societ
Ethnic Diversity and Distinctive Features of Familial Versus Multifactorial Chylomicronemia Syndrome: Insights from the UK FCS National Registry
\ua9 2024 The Authors.BACKGROUND: Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disorder. This study aimed to study the genotype distribution of FCS-causing genes in the United Kingdom, genotype-phenotype correlation, and clinical differences between FCS and multifactorial chylomicronemia syndrome (MCS). METHODS: The study included 154 patients (FCS, 74; MCS, 80) from the UK FCS national registry and the UK arm of the FCS International Quality Improvement and Service Evaluation Project. RESULTS: FCS was relatively common in non-Europeans and those with parental consanguinity (P<0.001 for both). LPL variants were more common in European patients with FCS (European, 64%; non-European, 46%), while the genotype was more diverse in non-European patients with FCS. Patients with FCS had a higher incidence compared with patients with MCS of acute pancreatitis (84% versus 60%; P=0.001), recurrent pancreatitis (92% versus 63%; P<0.001), unexplained abdominal pain (84% versus 52%; P<0.001), earlier age of onset (median [interquartile range]) of symptoms (15.0 [5.5-26.5] versus 34.0 [25.2-41.7] years; P<0.001), and of acute pancreatitis (24.0 [10.7-31.0] versus 33.5 [26.0-42.5] years; P<0.001). Adverse cardiometabolic features and their co-occurrence was more common in individuals with MCS compared with those with FCS (P<0.001 for each). Atherosclerotic cardiovascular disease was more prevalent in individuals with MCS than those with FCS (P=0.04). However, this association became nonsignificant after adjusting for age, sex, and body mass index. The prevalence of pancreatic complications and cardiometabolic profile of variant-positive MCS was intermediate between FCS and variant-negative MCS. CONCLUSIONS: The frequency of gene variant distribution varies based on the ethnic origin of patients with FCS. Patients with FCS are at a higher risk of pancreatic complications while the prevalence of atherosclerotic cardiovascular disease is lower in FCS compared with MCS. Carriers of heterozygous pathogenic variants have an intermediate phenotype between FCS and variant-negative MCS
Explanations for less small fibre neuropathy in South Asian versus European people with type 2 diabetes mellitus in the UK.
Low foot ulcer risk in South Asian, compared with European, people with type 2 diabetes in the UK has been attributed to their lower levels of neuropathy. We have undertaken a detailed study of corneal nerve morphology and neuropathy risk factors, to establish the basis of preserved small nerve fibre function in South Asians versus Europeans.In a cross-sectional, population-based study, age- and sex-matched South Asians (n=77) and Europeans (n=78) with type 2 diabetes underwent neuropathy assessment using corneal confocal microscopy, symptoms, signs, quantitative sensory testing, electrophysiology and autonomic function testing. Multivariable linear regression analyses determined factors accounting for ethnic differences in small fibre damage. -adjusted ethnic difference in corneal nerve fibre length (P=0.032) were pack-years smoked (P=0.13), BMI (P=0.062) and triglyceride levels (P=0.062).South Asians have better preserved small nerve fibre integrity than equivalent Europeans; furthermore, classic, modifiable risk factors for coronary heart disease are the main contributors to these ethnic differences. We suggest that improved autonomic neurogenic control of cutaneous blood flow in Asians may contribute to their protection against foot ulcers
- âŠ