46 research outputs found

    Colon-Derived Liver Metastasis, Colorectal Carcinoma, and Hepatocellular Carcinoma Can Be Discriminated by the Ca2+-Binding Proteins S100A6 and S100A11

    Get PDF
    Background: It is unknown, on the proteomic level, whether the protein patterns of tumors change during metastasis or whether markers are present that allow metastases to be allocated to a specific tumor entity. The latter is of clinical interest if the primary tumor is not known. Methodology/Principal Findings: In this study, tissue from colon-derived liver metastases (n = 17) were classified, lasermicrodissected, and analysed by ProteinChip arrays (SELDI). The resulting spectra were compared with data for primary colorectal (CRC) and hepatocellular carcinomas (HCC) from our former studies. Of 49 signals differentially expressed in primary HCC, primary CRC, and liver metastases, two were identified by immunodepletion as S100A6 and S100A11. Both proteins were precisely localized immunohistochemically in cells. S100A6 and S100A11 can discriminate significantly between the two primary tumor entities, CRC and HCC, whereas S100A6 allows the discrimination of metastases and HCC. Conclusions: Both identified proteins can be used to discriminate different tumor entities. Specific markers or proteomic patterns for the metastases of different primary cancers will allow us to determine the biological characteristics of metastasis in general. It is unknown how the protein patterns of tumors change during metastasis or whether markers are present that allow metastases to be allocated to a specific tumor entity. The latter is of clinical interest if the primary tumo

    Clinically abnormal case with paternally derived partial trisomy 8p23.3 to 8p12 including maternal isodisomy of 8p23.3: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of low copy repeats (LCRs) and common inversion polymorphisms, the human chromosome 8p is prone to a number of recurrent rearrangements. Each of these rearrangements is associated with several phenotypic features. We report on a patient with various clinical malformations and developmental delay in connection with an inverted duplication event, involving chromosome 8p.</p> <p>Methods</p> <p>Chromosome analysis, multicolor banding analysis (MCB), extensive fluorescence in situ hybridization (FISH) analysis and microsatellite analysis were performed.</p> <p>Results</p> <p>The karyotype was characterized in detail by multicolor banding (MCB), subtelomeric and centromere-near probes as 46,XY,dup(8)(pter->p23.3::p12->p23.3::p23.3->qter). Additionally, microsatellite analysis revealed the paternal origin of the duplication and gave hints for a mitotic recombination involving about 6 MB in 8p23.3.</p> <p>Conclusion</p> <p>A comprehensive analysis of the derivative chromosome 8 suggested a previously unreported mechanism of formation, which included an early mitotic aberration leading to maternal isodisomy, followed by an inverted duplication of the 8p12p23.3 region.</p

    Multi-Class Cancer Subtyping in Salivary Gland Carcinomas with MALDI Imaging and Deep Learning

    Get PDF
    Simple Summary The correct diagnosis of different salivary gland carcinomas is important for a prognosis. This diagnosis is imprecise if it is based only on clinical symptoms and histological methods. Mass spectrometry imaging can provide information about the molecular composition of sample tissues. Using a deep-learning method, we analyzed the mass spectrometry imaging data of 25 patients. Using this workflow we could accurately predict the tumor type in each patient sample. Abstract Salivary gland carcinomas (SGC) are a heterogeneous group of tumors. The prognosis varies strongly according to its type, and even the distinction between benign and malign tumor is challenging. Adenoid cystic carcinoma (AdCy) is one subgroup of SGCs that is prone to late metastasis. This makes accurate tumor subtyping an important task. Matrix-assisted laser desorption/ionization (MALDI) imaging is a label-free technique capable of providing spatially resolved information about the abundance of biomolecules according to their mass-to-charge ratio. We analyzed tissue micro arrays (TMAs) of 25 patients (including six different SGC subtypes and a healthy control group of six patients) with high mass resolution MALDI imaging using a 12-Tesla magnetic resonance mass spectrometer. The high mass resolution allowed us to accurately detect single masses, with strong contributions to each class prediction. To address the added complexity created by the high mass resolution and multiple classes, we propose a deep-learning model. We showed that our deep-learning model provides a per-class classification accuracy of greater than 80% with little preprocessing. Based on this classification, we employed methods of explainable artificial intelligence (AI) to gain further insights into the spectrometric features of AdCys

    Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS)

    Get PDF
    In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS). Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma

    Derivative chromosome 1 and GLUT1 deficiency syndrome in a sibling pair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic imbalances constitute a major cause of congenital and developmental abnormalities. GLUT1 deficiency syndrome is caused by various de novo mutations in the facilitated human glucose transporter 1 gene (1p34.2) and patients with this syndrome have been diagnosed with hypoglycorrhachia, mental and developmental delay, microcephaly and seizures. Furthermore, 1q terminal deletions have been submitted in the recent reports and the absence of corpus callosum has been related to the deletion between <it>C1orf100 </it>and <it>C1orf121 </it>in 1q44.</p> <p>Results</p> <p>This study reports on a sibling pair with developmental delay, mental retardation, microcephaly, hypotonia, epilepsy, facial dysmorphism, ataxia and impaired speech. Chromosome analysis revealed a derivative chromosome 1 in both patients. FISH and MCB analysis showed two interstitial deletions at 1p34.2 and 1q44. SNP array and array-CGH analysis also determined the sizes of deletions detailed. The deleted region on 1p34.2 encompasses 33 genes, among which is <it>GLUT1 </it>gene (<it>SLC2A1</it>). However, the deleted region on 1q44 includes 59 genes and distal-proximal breakpoints were located in the ZNF672 gene and SMYD3 gene, respectively.</p> <p>Conclusion</p> <p>Haploinsufficiency of <it>GLUT1 </it>leads to GLUT1 deficiency syndrome, consistent with the phenotype in patients of this study. Conversely, in the deleted region on 1q44, none of the genes are related to findings in these patients. Additionally, the results confirm previous reports on that corpus callosal development may depend on the critical gene(s) lying in 1q44 proximal to the <it>SMYD3 </it>gene.</p

    Identification of sex hormone-binding globulin in the human hypothalamus

    Get PDF
    Gonadal steroids are known to influence hypothalamic functions through both genomic and non-genomic pathways. Sex hormone-binding globulin ( SHBG) may act by a non-genomic mechanism independent of classical steroid receptors. Here we describe the immunocytochemical mapping of SHBG-containing neurons and nerve fibers in the human hypothalamus and infundibulum. Mass spectrometry and Western blot analysis were also used to characterize the biochemical characteristics of SHBG in the hypothalamus and cerebrospinal fluid (CSF) of humans. SHBG-immunoreactive neurons were observed in the supraoptic nucleus, the suprachiasmatic nucleus, the bed nucleus of the stria terminalis, paraventricular nucleus, arcuate nucleus, the perifornical region and the medial preoptic area in human brains. There were SHBG-immunoreactive axons in the median eminence and the infundibulum. A partial colocalization with oxytocin could be observed in the posterior pituitary lobe in consecutive semithin sections. We also found strong immunoreactivity for SHBG in epithelial cells of the choroid plexus and in a portion of the ependymal cells lining the third ventricle. Mass spectrometry showed that affinity-purified SHBG from the hypothalamus and choroid plexus is structurally similar to the SHBG identified in the CSF. The multiple localizations of SHBG suggest neurohypophyseal and neuroendocrine functions. The biochemical data suggest that CSF SHBG is of brain rather than blood origin. Copyright (c) 2005 S. Karger AG, Base

    Transthyretin Is Dysregulated in Preeclampsia, and Its Native Form Prevents the Onset of Disease in a Preclinical Mouse Model

    Get PDF
    Preeclampsia is a major pregnancy complication with potential short- and long-term consequences for both mother and fetus. Understanding its pathogenesis and causative biomarkers is likely to yield insights for prediction and treatment. Herein, we provide evidence that transthyretin, a transporter of thyroxine and retinol, is aggregated in preeclampsia and is present at reduced levels in sera of preeclamptic women, as detected by proteomic screen. We demonstrate that transthyretin aggregates form deposits in preeclampsia placental tissue and cause apoptosis. By using in vitro approaches and a humanized mouse model, we provide evidence for a causal link between dysregulated transthyretin and preeclampsia. Native transthyretin inhibits all preeclampsia-like features in the humanized mouse model, including new-onset proteinuria, increased blood pressure, glomerular endotheliosis, and production of anti-angiogenic factors. Our findings suggest that a focus on transthyretin structure and function is a novel strategy to understand and combat preeclampsia
    corecore