153 research outputs found

    Contrasting Patterns of Population Genetic Structure in Two Great Basin Stoneflies

    Get PDF
    Shifts in species distributions caused by climatic oscillations may lead to geographic isolation of populations and fewer opportunities for genetic exchange among locations. Examining trends in genetic relationships among stonefly populations can help us predict how organisms might respond to environmental changes. Prior work established that isolated montane populations of the stonefly Doroneuria baumanni had high levels of genetic structure within the Great Basin and that this diversification occurred during the Pleistocene. This differentiation may have resulted from historical climatic oscillations. With this in mind, we evaluated the contemporary genetic structure of another Great Basin stonefly, Hesperoperla pacifica. Because H. pacifica has relatively broader habitat requirements, we predicted its populations would display less genetic structure than those of D. baumanni. We estimated genetic differentiation among and within 12 populations of H. pacifica using 568 base pairs of the mitochondrial gene cytochrome b gene. FST estimates indicate that H. pacifica populations are less structured than D. baumanni, which had showed deep levels of divergence across limited geographic distances. These results confirm the benefits of a comparative approach to understanding the phylogeography and population genetic structure of stoneflies of the Great Basin

    Inter-comparison of quantitative imaging of lutetium-177 (177Lu) in European hospitals

    Get PDF
    Background: This inter-comparison exercise was performed to demonstrate the variability of quantitative SPECT/CT imaging for lutetium-177 (177Lu) in current clinical practice. Our aim was to assess the feasibility of using international inter-comparison exercises as a means to ensure consistency between clinical sites whilst enabling the sites to use their own choice of quantitative imaging protocols, specific to their systems. Dual-compartment concentric spherical sources of accurately known activity concentrations were prepared and sent to seven European clinical sites. The site staff were not aware of the true volumes or activity within the sources—they performed SPECT/CT imaging of the source, positioned within a water-filled phantom, using their own choice of parameters and reported their estimate of the activities within the source. Results: The volumes reported by the participants for the inner section of the source were all within 29% of the true value and within 60% of the true value for the outer section. The activities reported by the participants for the inner section of the source were all within 20% of the true value, whilst those reported for the outer section were up to 83% different to the true value. Conclusions: A variety of calibration and segmentation methods were used by the participants for this exercise which demonstrated the variability of quantitative imaging across clinical sites. This paper presents a method to assess consistency between sites using different calibration and segmentation methods

    Apparently synonymous substitutions in FGFR2affect splicing and result in mild Crouzon syndrome

    Get PDF
    BACKGROUND: Mutations of fibroblast growth factor receptor 2 (FGFR2) account for a higher proportion of genetic cases of craniosynostosis than any other gene, and are associated with a wide spectrum of severity of clinical problems. Many of these mutations are highly recurrent and their associated features well documented. Crouzon syndrome is typically caused by heterozygous missense mutations in the third immunoglobulin domain of FGFR2. CASE PRESENTATION: Here we describe two families, each segregating a different, previously unreported FGFR2 mutation of the same nucleotide, c.1083A>G and c.1083A>T, both of which encode an apparently synonymous change at the Pro361 codon. We provide experimental evidence that these mutations affect normal FGFR2 splicing and document the clinical consequences, which include a mild Crouzon syndrome phenotype and reduced penetrance of craniosynostosis. CONCLUSIONS: These observations add to a growing list of FGFR2 mutations that affect splicing and provide important clinical information for genetic counselling of families affected by these specific mutations

    Using the net benefit regression framework to construct cost-effectiveness acceptability curves: an example using data from a trial of external loop recorders versus Holter monitoring for ambulatory monitoring of "community acquired" syncope

    Get PDF
    BACKGROUND: Cost-effectiveness acceptability curves (CEACs) describe the probability that a new treatment or intervention is cost-effective. The net benefit regression framework (NBRF) allows cost-effectiveness analysis to be done in a simple regression framework. The objective of the paper is to illustrate how net benefit regression can be used to construct a CEAC. METHODS: One hundred patients referred for ambulatory monitoring with syncope or presyncope were randomized to a one-month external loop recorder (n = 49) or 48-hour Holter monitor (n = 51). The primary endpoint was symptom-rhythm correlation during monitoring. Direct costs were calculated based on the 2003 Ontario Health Insurance Plan (OHIP) fee schedule combined with hospital case costing of labour, materials, service and overhead costs for diagnostic testing and related equipment. RESULTS: In the loop recorder group, 63.27% of patients (31/49) had symptom recurrence and successful activation, compared to 23.53% in the Holter group (12/51). The cost in US dollars for loop recording was 648.50and648.50 and 212.92 for Holter monitoring. The incremental cost-effectiveness ratio (ICER) of the loop recorder was $1,096 per extra successful diagnosis. The probability that the loop recorder was cost-effective compared to the Holter monitor was estimated using net benefit regression and plotted on a CEAC. In a sensitivity analysis, bootstrapping was used to examine the effect of distributional assumptions. CONCLUSION: The NBRF is straightforward to use and interpret. The resulting uncertainty surrounding the regression coefficient relates to the CEAC. When the link from the regression's p-value to the probability of cost-effectiveness is tentative, bootstrapping may be used

    Study of the Effect of Reconstruction Parameters for Myocardial Perfusion Imaging in PET With a Novel Flow Phantom

    Get PDF
    Myocardial perfusion imaging (MPI) with positron emission tomography (PET) allows quantitative temporal measurements of the radioactive tracer distribution in tissue. The quantification for myocardial blood flow (MBF) is conducted with kinetic modeling of the image-derived time-activity curves (TACs) allowing derivation for MBF in units of mL/min per gram of tissue. The ordered-subset expectation maximization (OSEM) reconstruction algorithm with time-of-flight (TOF) and point spread function (PSF) modeling is now routinely employed in cardiac imaging. However, the varying counting statistics of the MPI measurements conducted with short-lived tracers present a challenge for the PET image reconstruction methods. Thus, the effect of the reconstruction methods on the flow quantification needs to be evaluated in a standardized manner. Recently, a novel PET flow phantom modeling the MBF has been developed for investigation of the standardization of the MBF measurements. In this study, the effect of the reconstruction parameters on the image-derived flow values against a known reference flow of the flow phantom was studied with [O-15]H2O. The effects were studied by comparison of TACs and relative errors of the image-derived flow values with respect to the phantom-derived reference flow value using 5 repeated PET scans with fixed acquisition parameters using a digital Discovery MI PET/CT system. The reconstruction methods applied were OSEM using both TOF and PSF (OSEM-TOF-PSF) with several matrix sizes (128 x 128, 192 x 192, 256 x 256, 384 x 384), Gaussian filter sizes (4, 8 mm) and OSEM without TOF and PSF (OSEM), with TOF (OSEM-TOF) and with PSF (OSEM-PSF) in addition to recently introduced regularized reconstruction method based on Bayesian-penalized maximum likelihood (Q.Clear). Between repeated measurements, the image-derived flow values showed high repeatability with a SD less than 2 mL/min as well as high accuracy with the maximum error of 7% with respect to the reference flow for all reconstructions. Overall, reconstruction settings had only a small impact on the resulting flow values. In conclusion, due to the small differences detected, any of the implemented reconstruction algorithms on the system can be applied in MPI studies for accurate flow quantification

    Measurement uncertainty quantification for myocardial perfusion using cardiac positron emission tomography imaging

    Get PDF
    Perfusion, the flow of blood, and hence oxygen, is essential to the functioning of the heart. Reduced perfusion (or ischemia), is a reliable indicator of the presence of significant obstructive coronary artery disease (CAD), which is one of the biggest causes of death in Europe. Myocardial perfusion imaging is a non-invasive technique used in the diagnosis, management and prognosis of CAD and is a key component in the triage of patients into treatment and non-treatment groups. Cardiac positron emission tomography (PET) is an imaging technique with high sensitivity and specificity to CAD, however perfusion measurements are difficult to calibrate against a common reference standard, and confidence in them is generally not quantified in terms of measurement uncertainty. There are a number of steps involved in measuring perfusion using cardiac PET-from patient preparation to data analysis-each associated with potential sources of uncertainty. The absence of measurement uncertainty quantification can lead to inaccuracies in measurement results, a lack of comparability between devices or scanning facilities, and is likely to be detrimental to a decision-making process. In this paper, we identify some of the sources of measurement uncertainty in the cardiac PET perfusion measurement pipeline. We assess their relative contribution by performing a sensitivity analysis using experimental data of a flow phantom acquired on a PET scanner. The results of this analysis will inform users of how parameter choices in their imaging pipeline affect the output of their measurements, and serves as a starting point to develop an uncertainty quantification method.</p

    Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes

    Get PDF
    Background & Aims: Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Methods: Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. Results: HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. Conclusions: HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes

    Effectiveness and cost-effectiveness of an educational intervention for practice teams to deliver problem focused therapy for insomnia: rationale and design of a pilot cluster randomised trial

    Get PDF
    Background: Sleep problems are common, affecting over a third of adults in the United Kingdom and leading to reduced productivity and impaired health-related quality of life. Many of those whose lives are affected seek medical help from primary care. Drug treatment is ineffective long term. Psychological methods for managing sleep problems, including cognitive behavioural therapy for insomnia (CBTi) have been shown to be effective and cost effective but have not been widely implemented or evaluated in a general practice setting where they are most likely to be needed and most appropriately delivered. This paper outlines the protocol for a pilot study designed to evaluate the effectiveness and cost-effectiveness of an educational intervention for general practitioners, primary care nurses and other members of the primary care team to deliver problem focused therapy to adult patients presenting with sleep problems due to lifestyle causes, pain or mild to moderate depression or anxiety. Methods and design: This will be a pilot cluster randomised controlled trial of a complex intervention. General practices will be randomised to an educational intervention for problem focused therapy which includes a consultation approach comprising careful assessment (using assessment of secondary causes, sleep diaries and severity) and use of modified CBTi for insomnia in the consultation compared with usual care (general advice on sleep hygiene and pharmacotherapy with hypnotic drugs). Clinicians randomised to the intervention will receive an educational intervention (2 × 2 hours) to implement a complex intervention of problem focused therapy. Clinicians randomised to the control group will receive reinforcement of usual care with sleep hygiene advice. Outcomes will be assessed via self-completion questionnaires and telephone interviews of patients and staff as well as clinical records for interventions and prescribing. Discussion: Previous studies in adults have shown that psychological treatments for insomnia administered by specialist nurses to groups of patients can be effective within a primary care setting. This will be a pilot study to determine whether an educational intervention aimed at primary care teams to deliver problem focused therapy for insomnia can improve sleep management and outcomes for individual adult patients presenting to general practice. The study will also test procedures and collect information in preparation for a larger definitive cluster-randomised trial. The study is funded by The Health Foundation

    Antiviral responses induced by Tdap-IPV vaccination are associated with persistent humoral immunity to Bordetella pertussis

    Get PDF
    Many countries continue to experience pertussis epidemics despite widespread vaccination. Waning protection after booster vaccination has highlighted the need for a better understanding of the immunological factors that promote durable protection. Here we apply systems vaccinology to investigate antibody responses in adolescents in the Netherlands (N = 14; NL) and the United Kingdom (N = 12; UK) receiving a tetanus-diphtheria-acellular pertussis-inactivated poliovirus (Tdap-IPV) vaccine. We report that early antiviral and interferon gene expression signatures in blood correlate to persistence of pertussis-specific antibody responses. Single-cell analyses of the innate response identified monocytes and myeloid dendritic cells (MoDC) as principal responders that upregulate antiviral gene expression and type-I interferon cytokine production. With public data, we show that Tdap vaccination stimulates significantly lower antiviral/type-I interferon responses than Tdap-IPV, suggesting that IPV may promote antiviral gene expression. Subsequent in vitro stimulation experiments demonstrate TLR-dependent, IPV-specific activation of the pro-inflammatory p38 MAP kinase pathway in MoDCs. Together, our data provide insights into the molecular host response to pertussis booster vaccination and demonstrate that IPV enhances innate immune activity associated with persistent, pertussis-specific antibody responses
    corecore