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Introduction 

 

Phylogeography is the study of processes that govern the geographic distribution of 

genetic variation (Avise 1998). Similar patterns of genetic structure (concordance) in multiple 

species suggest large, landscape- or climate-level effects. These patterns can help identify 

hotspots of genetic diversity as well as major drivers of genetic differentiation. Information 

gathered from genetic analysis can be used in a predictive framework. 

In this current study, we examined patterns of genetic differentiation in ‘sky island’ 

populations of stream-dwelling insects. Sky islands are mountains isolated by surrounding 

valleys with different environmental conditions. They are not speciose but are often home to 

many endemic species (Taubmann et al. 2011; Warshall 1999). Historical or contemporary 

processes can shape the genetic structure of sky island populations. Historical processes include 

climatic oscillations that can cause elevational shifts in climate and montane vegetation 

(Brunsfield et al. 2001). Periods of connectivity and potential gene flow across islands occur 

when the weather is cooler and wetter and montane vegetation occurs at lower elevations 

(Waltari and Guralnick 2009).  In contrast, periods of isolation occur during warmer and drier 

periods when vegetation retreats up the mountain; this may restrict gene flow among montane 

populations and allow for genetic divergence and speciation (Hewitt 2004). 

The Great Basin (GB) is an internally drained complex encompassing sky islands and 

intermontane basins with no outlet to the ocean (Grayson 2011). It lies in western North America 

and is bordered by the Sierra Nevada to the west and the Rocky Mountains to the east.  The GB 

is well studied, has a well-preserved geological record, and is a hotspot of endemism. Its lake 

levels have fluctuated, and vegetation has shifted due to climatic oscillations (Grayson 2011). 

Climatic oscillations and changes in moisture and vegetation patterns through time are expected 

to have a strong effect on animals that are habitat specialists, particularly those that require a 

cool and wet habitat.  

Stoneflies such as Hesperoperla pacifica (Plecoptera:Perlidae) are well suited to the 

study of population genetic differentiation and species distributions among GB sky islands. 

Stoneflies have low dispersal tendencies (Nelson 1994), and their life cycle includes an aquatic 

larval stage and an adult terrestrial stage (Merritt et al. 2008). Adult stoneflies are thought to stay 

in the same locality even if the environment is favorable for dispersal (Hughes et al. 1999). 

Hesperoperla pacifica is a large, carnivorous stonefly (Allan et al. 1987). Nymphs live in riffles 

and rocky, boulder-strewn areas with a moderate to fast current. They have a life span of two or 

three weeks as adults (Nebeker 1971). They are called ‘golden stoneflies’ because of their 

yellow-brown color. Hesperoperla pacifica is widely distributed from California and New 

Mexico to Alaska and across the Great Basin. They are not pests and are predators of such other 

insects in streams as mayflies (Ephemeroptera), midges (Chironomidae), and caddisflies 

(Trichoptera) (Richardson and Gaufin 1971). 

A previous study by Schultheis et al. (2012) found high levels of genetic structure among 

sky island populations of the stonefly Doroneuria baumanni that were particularly pronounced in 

regions separated by low valleys, even in populations separated by as little as 16 km (Figure 1). 

They found three clades (Jackson, Western, and Eastern). The groupings shown in Figure 1 

represent our a priori hypothesis of genetic structure based on these results from D. baumanni. 

The focus of the current study was to identify whether we find the same geographic pattern in a 

confamilial species, the stonefly H. pacifica, which is known to have a more widespread 



distribution. It is still found in cool mountain streams

like D. baumanni.  

Because H. pacifica is a habitat generalist 

that it would not be as sensitive to warm climates as 

longer periods of population connectivity. The separation of the 

genetic differentiation, but we predict

pacifica, and thus lower levels of genetic differentiation

1). We also predicted that H. pacifica

million to 12 thousand years ago) 

divergence time in a different species would suggest that historical processes shaped the 

distribution of a number of species in the region.

 

Experimental Methods and Procedures

Sampling 

 

Hesperoperla pacifica larvae were coll

HM, TY, SC, JB) and June 2009

initialisms in Table 1; Figure 1). 

Figure 1: Great Basin region. W

Labels are as in Table 1. Groupings represent our a priori hypothesis of genetic structure based 

on the results from D. baumanni

permission). 

 

Molecular methods 

 

Genomic DNA was isolated using the PureGene kit (Gentra Systems).  The primers 

728F (5’- GGA CGA GGG ATG TAT TAC GG

CAG GTC GT-3’) from Kauwe 

t is still found in cool mountain streams, but it is not restricted to upper elevations 

a habitat generalist that occurs at lower elevations

as sensitive to warm climates as D. baumanni and would 

of population connectivity. The separation of the sky islands would still lead to

but we predicted there would be more gene flow among populations

, and thus lower levels of genetic differentiation, than were seen in D. baumanni 

H. pacifica populations diverged sometime during the Pleistocene (2.5 

million to 12 thousand years ago) but more recently than those of D. baumanni. 

fferent species would suggest that historical processes shaped the 

distribution of a number of species in the region. 

Experimental Methods and Procedures 

arvae were collected by kickscreen in June 2002

and June 2009 (DC, RM, DM, SO, and SS) (Range names are 

. All larvae were preserved in 95% ethanol at -80

 

 

. White indicates elevations less than 1500 m above sea level. 

Groupings represent our a priori hypothesis of genetic structure based 

D. baumanni (adapted from Figure 1 in Schultheis et al. 2012

isolated using the PureGene kit (Gentra Systems).  The primers 

GGA CGA GGG ATG TAT TAC GG-3’) and cyt-b 745R (5’- AGG GGT CTT CAA 

from Kauwe et al. (2004) amplified an 867 bp fragment of the mitochondrial

it is not restricted to upper elevations 

occurs at lower elevations, we predicted 

and would thus experience 

sky islands would still lead to 

among populations of H. 

D. baumanni (Figure 

populations diverged sometime during the Pleistocene (2.5 

. Finding a similar 

fferent species would suggest that historical processes shaped the 

in June 2002 (SR, PF, JK, 

are associated with 

80°C. 

 

1500 m above sea level. 

Groupings represent our a priori hypothesis of genetic structure based 

2012, reprinted by 

isolated using the PureGene kit (Gentra Systems).  The primers cyt-b 

AGG GGT CTT CAA 

the mitochondrial 



cytochrome b gene. Gene fragments were amplified in 12.5 µL reactions, which contained 2.5 

µL 5X PCR buffer (Promega), 0.875 µL 25 mM MgCl2 (Promega), 0.5 µL 8 mM dNTPs 

(Promega), 0.5 µL 10 mM primers, and 0.4 µL Taq Polymerase (Promega). The temperature 

regime for amplification of the cyt-b gene was an initial denaturation of 94°C for 3 min, 

followed by 34 cycles of 1 min at 94°C, 1 min annealing temperature of 54°C and 1.5 min at 

72°C. A final extension step of 7 min at 72°C ended the regime. PCR products were checked on 

a 1% agarose gel stained with ethidium bromide and visualized with a UV light source. PCR 

products were purified using the ExoSAP procedure (Pandey et al. 2013) and were sent to 

Operon Technologies in Huntsville, Alabama for sequencing. All PCR products were sequenced 

in both directions. Sequences were edited and aligned in Geneious 6.1.5 which gave us a 

consensus sequence for each individual sequence after having checked for errors. Sequences 

were trimmed in Geneious so that all individuals were represented, yielding a final data matrix of 

568 bp. 

 

Phylogeny and Divergence time estimates 

 

Evolutionary models and partitioning strategies were evaluated with Kakusan4 (vers. 

4.0.2012.12.14; Tanabe 2011), which chose a single partition and the GTR model for the data 

under the AICc4 criterion. We estimated phylogenetic relationships using MrBayes (vers. 3.2.2; 

Ronquist et al. 2012), with 1 million generations, discarding the first 100,000 generations as 

burnin. We used Tracer (vers. 1.5; Rambaut et al. 2013) to verify that the Markov chain had 

reached stationarity before the burnin period and that the posterior distribution was appropriately 

sampled. 

We estimated within and among clade divergence times in BEAST (vers. 1.5.4; 

Drummond & Rambaut 2007). For each population, we used the HKY+ Γ model with an 

uncorrelated relaxed lognormal clock to estimate divergence times among populations. This 

model was selected because confidence intervals in preliminary analyses were wide. We were 

able to narrow them somewhat with this model, because it has the fewest states to estimate 

parameters. Divergence times were estimated using two independent runs that sampled every 

10,000th generation for 100 million generations. We used a lognormal prior distribution with a 

calibration point based on estimated time of speciation between H. pacifica and D. theodora of 

2–5 million years before present (ybp), following Carstens et al. (2005). Thus, priors for the time 

to most recent common ancestor (tMRCA) for H. pacifica and D. theodora were set at a median 

of 3.5 and standard deviation of 0.17; this yielded a 95% credible interval between 2 and 5 

million ybp. The tree prior used for divergence dating was the coalescent ⁄ constant size. For the 

ucld.mean parameter, the following priors were used: mean = 0.125, SD = 1.1, and offset = 0; 

this yielded a rate range of 0.5–5.4 substitutions per site per million years, which represented a 

wide range of known substitution rates for insect mtDNA genes. The outgroup used to root the 

tree was Doroneuria theodora. LOGCOMBINER (vers. 1.5.4) was used to combine the trace 

and tree files, and estimates of median time to most recent common ancestor were obtained from 

the combined file. For comparison of divergence time estimates with D. baumanni, populations 

were grouped into the Eastern (HM, TY, JB, DC, DM, RM, SC, SO, SS), Western (PF, SR), or 

Jackson (JK) group. 

 

 

 



 

 

Population genetic analysis 

 

Levels of genetic differentiation within and among mountain ranges (F and Φ statistics) 

were determined by an AMOVA analysis implemented in ARLEQUIN (vers. 3.11; Excoffier et 

al. 2005) using 16,000 permutations in the Tamura-Nei model of nucleotide substitution. The 

AMOVA yielded FST, ΦST, number of migrants (Nm), and exact test of sample differentiation 

estimates. FST values were calculated using haplotype frequency only, whereas the ΦST 

calculations included both haplotype frequency and sequence divergence (a measure of how 

different two sequences are). Due to the low level of support for groupings in the Bayesian tree 

(a grouping that includes a common ancestor and all the descendants of that ancestor; see Figure 

2), we used the geographic populations (mountain ranges = populations) for genetic structure 

testing in ARLEQUIN.  A haplotype network was created in HAPSTAR (vers. 0.5), using 

minimum spanning network data generated in ARLEQUIN. The network shows how the 

haplotypes (unique DNA sequences) are connected to each other. 

 

Table 1: Collection locations, codes, sample sizes, and haplotypes for H. pacifica from the Great 

Basin, Nevada, and Utah. Numbered haplotypes represent 568 base pairs of cyt b. 

 

Location 
Latitude, 

Longitude 
N 

Haplotype 

(s) 

D.baumanni 

clade 

Pine Forest Range (PF) 

   Big Creek, Humboldt Co., NV  41.67, -118.67  10 2 W 

Santa Rosa Range (SR) 

   Rebel Creek, Humboldt Co., NV  41.60, -117.75  4 2, 7 W 

Jackson Mountains (JK) 

   Bottle Creek, Humboldt Co., NV  41.32, -118.32 3 1 JK 

Humboldt Range (HM) 

   Star Creek, Humboldt Co., NV  40.55, -118.11  1 1 E 

Toiyabe Range (TY) 

   South Twin River, Nye Co., NV 38.53, -117.15 2 5, 7 E 

Jarbidge Mountains (JB) 

   Jarbidge River, Elko Co., NV  41.81, -115.41 9 5, 7 E 

Desatoya Mountains (DM) 

   Big Den Creek,Churchill Co., NV 39.43, -117.67 4 5 E 

Roberts Mountains (RM) 

   Dry Creek, Eureka Co., NV 39.92, -116.29 5 3,4 E 

Sonoma Range (SO) 

   Sonoma Creek, Pershing Co., NV 40.85, -117.66 3 1, 8, 9 E 

Snowstorm Mountain (SS) 

   Frazier Creek, Elko Co., NV 41.33, -116.97 3 5, 6 E 

Deep Creek Mountains (DC) 

   Trout Creek, Juab Co., UT 39.85, -113.91 5 1, 5, 10, 11 - 

Schell Creek Range (SC) 
    

   Cleve Creek, White Pine Co., NV 39.33, -114.72 8 5 - 



Phylogeny and Divergence time estimates

 

The tree yielded a single 

Roberts Mountains and Snowstorm

(posterior probability 0.97).  

 

Figure 2: Gene tree for Great Basin 

mtDNA and Bayesian inference. Numbers below nodes indicate Bayesian posterior probabilities 

greater than 0.5. Location codes 

Figure 1. Clade groupings of populations correspond to clades identified for 

 

 

Results 

Phylogeny and Divergence time estimates 

a single clade that was not geographically distinct, with the exceptio

torm Mountain (Figure 2), both of which showed strong support 

 
 

Gene tree for Great Basin H. pacifica populations inferred using 568 bp of cyt 

mtDNA and Bayesian inference. Numbers below nodes indicate Bayesian posterior probabilities 

greater than 0.5. Location codes are as in Table 1. Colors indicate the population of origin as in 

groupings of populations correspond to clades identified for D. baumanni

clade that was not geographically distinct, with the exception of 

which showed strong support 

populations inferred using 568 bp of cyt b 

mtDNA and Bayesian inference. Numbers below nodes indicate Bayesian posterior probabilities 

population of origin as in 

D. baumanni. These 



served as our a priori hypotheses for clades in H. pacifica: W = western, E = eastern, and JK = 

Jackson. Populations that do not have a corresponding clade were not sampled for D. baumanni. 

 

The divergence times among ranges in H. pacifica populations are more recent than 

previously found in D. baumanni (Table 2b). This can be seen in more detail through within-

clade estimates: the Western clade is represented by Pine Forest and Santa Rosa populations, and 

all appear to have diverged more recently in H. pacifica. The Jackson clade diverged most 

recently in H. pacifica, a pattern similar to that of D. baumanni (Table 2a). In addition, the 

divergence time ranges for both species are overlapping. 

 

Table 2: (a) Mean within and overall clade (based on D. baumanni clades) divergence time 

estimates in years before present calculated in BEAST vers. 1.8.0. Parentheses indicate 95% 

confidence intervals. The Eastern clade for H. pacifica includes Jarbidge, Humboldt, Snowstorm, 

Roberts Mountains, Sonoma, Toiyabe, Deep Creek, Schell Creek, and Desatoya Mountains; The 

Western clade includes Pine Forest and Santa Rosa. Numbers reported are for D. baumanni from 

Table 3 in Schultheis et al. (2012). (b) Overall estimates. 

 

 

Population genetic analysis 

 
We collected data for a total of 57 individuals from 12 populations. The final alignment was 568 bp; eleven 

unique haplotypes (DNA sequences) were found (Figure 3). Snowstorm, Roberts, Deep Creek, and 

Sonoma all had some unique haplotypes. Four haplotypes were shared across multiple 

populations, including some that were very far geographically, such as JK and DC that are 525 

km apart. 

The AMOVA analysis suggested that there was significant genetic structure among 

populations (ΦST = 0.63, P < 0.01 and FST = 0.39, P < 0.01). In H. pacifica, five out of 66 (8%) 

pairwise ΦST values were significantly different from 0 (with a Bonferroni correction of P = 

0.05/66 = 0.007); these ranged from 0.59 to 1 (Table 3). Significant comparisons included the 

PF, DC, JB, RM, and SC populations. 

 

 

(a) within-clade      

  E W JK 

D. baumanni 183,000 (63,655-325,800) 144,000 (36,546-289,300) 59,830 (7,761-139,700) 

H. pacifica 67,525 (1,147-231,800) 73,150 (30,000-197,700) 37,300 (1,019-56,200) 

(b) overall     

D. baumanni 642,200 (107,300-1,815,000)     

H. pacifica 547,400 (52,900-1,400,000)     



 
 

Figure 3: H. pacifica haplotype network of 11 haplotypes of 568 bp of the cyt b gene created in 

HAPSTAR (vers. 0.5.) n = 57. Numbers indicate the haplotype number. Connections between 

circles indicate a single base pair change between sequences.  

 

 

Table 3: Above diagonal, pairwise Φ ST values (16,000 permutations, Tamura and Nei distance 

method). Below diagonal, Slatkin’s linearized Nm values. Bold numbers indicate a significant 

result in the permutation test (P < 0.007). Asterisks indicate significant results from the exact test 

(P < 0.007). 

 

DC DM HM JB JK PF RM SC SO SR SS TY 

DC - 0.04 -0.50 0.15 0.12 0.59* 0.61 0.21 0.14 0.12 0.20 -0.03 

DM 10.88 - 1.00 0.05 1.00 1.00 0.87 0.00 0.67 0.33 0.58 0.38 

HM ∞ 0.00 - 0.50 0.00 1.00 0.86 1.00 -1.00 0.33 0.60 0.33 

JB 2.83 9.23 0.50 - 0.63 0.72* 0.73 0.17 0.58 0.02 0.37 -0.34 

JK 3.78 0.00 ∞ 0.29 - 1.00 0.91 1.00 0.00 0.61 0.80 0.77 

PF 0.35 0.00 0.00 0.20 0.00 - 0.96* 1.00* 0.90 0.57 0.92 0.92 

RM 0.32 0.07 0.08 0.18 0.05 0.02 - 0.92 0.79 0.71 0.80 0.77 

SC 1.90 ∞ 0.00 2.48 0.00 0.00 0.04 - 0.80 0.51 0.73 0.63 

SO 3.10 0.25 ∞ 0.36 ∞ 0.06 0.13 0.13 - 0.50 0.57 0.44 

SR 3.64 1.00 1.00 24.48 0.32 0.38 0.20 0.47 0.50 - 0.37 -0.21 

SS 2.06 0.36 0.33 0.87 0.12 0.04 0.12 0.18 0.37 0.84 - 0.32 

TY ∞ 0.80 1.00 ∞ 0.15 0.04 0.15 0.30 0.63 ∞ 1.05 - 

 

Discussion 

 

Our results support the hypothesis that historical and contemporary processes have 

helped shape the genetic structure of H. pacifica populations in the Great Basin. Our hypothesis 

predicting lower levels of genetic differentiation of H. pacifica populations was supported.  The 

Snowstorm, Roberts, Sonoma, and Deep Creek populations were genetically differentiated 

populations. The other populations had low Φst values, which suggests there is some dispersal 

and contemporary gene flow among them. In contrast, D. baumanni populations had much 



higher overall and pairwise FST and Φst values; this suggests genetic isolation with little 

dispersal among populations.  

For D. baumanni, there were approximately 30 different haplotypes found in a similar 

geographic area with slightly more samples (n = 90) (Figure 3 in Schultheis et al. 2012). The 

haplotypes grouped into three major clades that were separated by many mutational steps (Figure 

5 in Schultheis et al. 2012). Hesperoperla pacifica shows a much different pattern; several 

haplotypes were shared across a broad region.Populations that were quite distinct genetically in 

D. baumanni shared haplotypes in H. pacifica (e.g., PF, SR, and TY) (Figure 5 in Schultheis et 

al. 2012). Furthermore, the Jackson Range was considered its own clade in D. baumanni because 

it had the largest number of mutational steps from other clades (Figures 3 and 5 in Schultheis et 

al. 2012), whereas in H. pacifica, the haplotype from the Jackson range (Hap 1) is shared with 

three other mountain ranges (Table 1, Figure 2). Haplotype sharing is also reflected in the gene 

tree for H. pacifica which was not as resolved as that of D. baumanni. 

Overall ΦST values for H. pacifica indicated genetic structure but this number was much 

lower than the ΦST value for D. baumanni (ΦST = 0.90, P < 0.01), and the results of the AMOVA 

were consistent with those of the phylogenetic analysis. There were high levels of genetic 

differentiation among certain populations but low levels among others. Pairwise ΦST values for 

all populations indicate that contemporary dispersal among sky islands by both aquatic larvae, 

which can disperse through streams, and aerial adults, is restricted among some populations but 

not others. 

The Bayesian analysis and the haplotype network suggest that Snowstorm, Roberts, 

Sonoma, and Deep Creek populations are genetically isolated in H. pacifica. This is a different 

result than for D. baumanni populations, where the populations that were very different from 

others were at the Jackson Range, Pine Forest, Santa Rosa, and the Sierra Nevada sites. 

The contrasting patterns of genetic differentiation in H. pacifica and D. baumanni are not 

surprising given the differences in the geographic distribution of the haplotypes in the two 

species and may be a result of different habitat tolerances. Doroneuria baumanni is restricted to 

upper elevations and headwater streams, whereas H. pacifica has less stringent habitat 

preferences and is more of a habitat generalist, occurring in rivers, creeks, and springs at lower 

elevations which may favor gene flow among populations. H. pacifica is therefore not as 

sensitive to climate change as D. baumanni. 

Our analysis in BEAST dated the divergence of all H. pacifica clades to 547,400 ybp 

(CI95% 52,900-1,400,000), which is during the Pleistocene. While D. baumanni divergence times 

were older (suggesting longer isolation), the timing of divergence was similar, with all estimates 

well within the Pleistocene and the Jackson clade being most recent. We did not detect any 

recent effects on genetic isolation, but the tools we were using may be unable to detect very 

recent influences. However because our sample sizes are small and not equally distributed, the 

results should be interpreted with caution.  

Kauwe et al. (2004) also performed a phylogeographic study of stoneflies in the western 

United States. They used cyt b to investigate the patterns of genetic differentiation in 

Pteronarcys californica populations. Their results showed a pattern of restricted gene flow with 

isolation by distance, which they suggested may be a result of dispersal via connected streams 

and rivers. Their study also implied that the observed pattern of genetic variation was directed by 

long distance, overland dispersal. These results mirror those in our study–we also found gene 

flow across high valleys–and confirm why it is important to study multiple species to infer broad 

scale historical influences such as climate changes. 



Mitochondrial DNA has some limitations such as being prone to selective sweeps which 

wipe out genetic diversity and only reflecting dispersal of females because it is maternally 

inherited (Hurst and Jiggins 2005). However, mtDNA is still a useful marker to use because its 

high levels of variation allow detection of recent genetic divergence, as found in our study. Other 

advantages of mitochondrial DNA is that its fast evolutionary rates give us high information 

content per base pair sequenced. It is useful for studying recent changes, it is easy to amplify, 

and it has a faster mutation rate because of its inefficient mutation repair mechanism. It can also 

be used to determine phylogenetic relationships of closely related taxa.  It is still best to use it in 

combination with an estimate from other markers, such as nuclear loci, as it will lead to more 

confident population parameter estimates and a better test for phylogenetic hypotheses 

(Schultheis et al. 2014).  

The results of our study underscore the benefits of a comparative approach to 

understanding the influences of combined historical and contemporary processes on population 

isolation in the Great Basin. 
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