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Abstract
Perfusion, the flow of blood, and hence oxygen, is essential to the functioning of the heart.
Reduced perfusion (or ischemia), is a reliable indicator of the presence of significant obstructive
coronary artery disease (CAD), which is one of the biggest causes of death in Europe.
Myocardial perfusion imaging is a non-invasive technique used in the diagnosis, management
and prognosis of CAD and is a key component in the triage of patients into treatment and
non-treatment groups. Cardiac positron emission tomography (PET) is an imaging technique
with high sensitivity and specificity to CAD, however perfusion measurements are difficult to
calibrate against a common reference standard, and confidence in them is generally not
quantified in terms of measurement uncertainty. There are a number of steps involved in
measuring perfusion using cardiac PET—from patient preparation to data analysis—each
associated with potential sources of uncertainty. The absence of measurement uncertainty
quantification can lead to inaccuracies in measurement results, a lack of comparability between
devices or scanning facilities, and is likely to be detrimental to a decision-making process.
In this paper, we identify some of the sources of measurement uncertainty in the cardiac PET
perfusion measurement pipeline. We assess their relative contribution by performing a
sensitivity analysis using experimental data of a flow phantom acquired on a PET scanner. The
results of this analysis will inform users of how parameter choices in their imaging pipeline
affect the output of their measurements, and serves as a starting point to develop an uncertainty
quantification method.
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sources of measurement uncertainty, flow phantom
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1. Introduction

Cardiovascular disease is a leading cause of mortality in
Europe and is estimated to cost the European economy approx-
imately €200 billion each year [1]. Perfusion, the flow of
blood, and hence delivery to the capillary tissue, is essential to
the functioning of the heart. Reduced perfusion, or ischemia,
is an early marker of chronic heart disease [2].

Myocardial perfusion can bemeasured using positron emis-
sion tomography (PET) imaging, a non-invasive technique
for the diagnosis, management and prognosis of cardiovascu-
lar disease. This technique reveals regions of underperfused
myocardium, which are a reliable indicator of the presence
of significant obstructive coronary artery disease (CAD). This
imaging procedure is a key component in the triage of patients
into treatment and non-treatment groups. Cardiac PET ima-
ging offers a high sensitivity and specificity to CAD [3], how-
ever perfusion measurements are difficult to calibrate against
a common reference standard due to complex acquisition and
analysis protocols, and confidence in them is generally not
quantified in terms of measurement uncertainty. The absence
of measurement uncertainty quantification leads to a poorer
understanding of measurement results and a lack of compar-
ability between devices or scanning facilities. In clinical prac-
tice, the lack of evaluation of measurement uncertainty can
ultimately lead to false diagnoses, patient distress, unneces-
sary treatments and litigation.

The measurement of cardiac perfusion using PET ima-
ging is a complex process with many steps that range from
patient preparation, through data gathering, to data analysis
[4]. Each of these steps is associated with potential sources of
measurement uncertainty. Left unaccounted for, these sources
of uncertainty are likely to be detrimental to the measure-
ment decision-making processes, affecting clinical outcomes.
Uncertainty information can be used to quantify the risk of
misclassification of patients [5], especially in borderline cases,
which is a key difficulty in healthcare planning.

In this paper, we explore some of the sources of measure-
ment uncertainty in the cardiac PET perfusion measurement
pipeline and perform a sensitivity analysis to quantify their
relative contribution. Experimental data of a flow phantom
acquired on a PET scanner is used to carry out the sensit-
ivity analysis, the results of which will inform users of how
parameter choices in their imaging pipeline affect the output
of their measurements. Furthermore, the analysis serves as a
starting point to develop an uncertainty quantification method,
which in turn will facilitate effective comparisons between the
measuring systems used at different institutes.

This paper is structured as follows. Section 2 describes the
measurement model, i.e. how to measure cardiac perfusion
using PET imaging, as well as presenting the flow phantom
used in this study and the experimental details. In section 3
the sensitivity analysis study is described and the results of it
are presented. These results identify which of the investigated
input parameters most affect the output of the measurements
made. Section 4 discusses the main findings of the paper and
section 5 presents a summary and thoughts on future direction
of this work.

2. Cardiac PET perfusion measurements

PET is an imaging method for quantitatively measuring
biochemical and physiological processes in vivo by using
radio-pharmaceutical tracers—chemical compounds that are
injected into the patient—and measuring the annihilation radi-
ation path of such tracers using a coincidence detection tech-
nique, with counts typically quantified in Becquerels (Bq).
PET tracers that are used for estimation of perfusion (or
flow) include freely diffusible tracers such as [15O]water
(radiowater), partially extracted tracers including 82Rb and
[13N]ammonia and, in the case of the myocardium, also
[11C]acetate. This section describes the measurement of flow
using PET and [15O]water, one of the most commonly used
tracers for academic research, often considered the ‘gold
standard’ PET perfusion measurement [3].

PET can be considered to be an inherently quantitat-
ive medical imaging method, provided that all the neces-
sary data corrections (e.g. for attenuation, scatter and dead-
time) and system calibrations (e.g. normalisation, conver-
sion from counts to Bq and system geometry) are performed
correctly. Each voxel in a reconstructed time series of PET
images represents the concentration of radioactivity (Bqml−1)
as a function of time in minutes (min), from which time-
activity-curves (TACs) can be extracted. Values of perfusion
based on PET images are generally given in units of ml (g
min)−1, and can be derived by performing kinetic modelling
[6–10] of TACs measured from the blood pool and myocardial
tissue.

A basic image acquisition and data analysis procedure for
a typical radiowater PET perfusion study involves the follow-
ing steps: (a) preparation and injection of the radiowater into
patient (or test object), (b) image acquisition, (c) image recon-
struction, (d) post-processing of the reconstructed images and
(e) data analysis to calculate the flow. Figure 1 shows a
schematic representation of each of these steps with associ-
ated sources of uncertainty for each one.

2.1. Flow phantom

In order to fully understand and control the sources of uncer-
tainty involved in the measurement process as shown in
figure 1, a flow phantom (DCE Dynamic Flow Phantom, Shel-
ley Medical Imaging Technologies, Canada) was used in a
similar way to [11] , and a schematic of the set up is shown in
figure 2. Phantom validation for cardiac PET perfusion ima-
ging is presented in [12].

The phantom set-up contains a water container, a peristaltic
pump, an injection port, a phantom shell, a flow constrictor
valve and flow meters. A schematic of the flow phantom
is shown in figure 2. The input chamber models the left
ventricle blood pool whereas the exchange cylinder and per-
forated tube model tracer exchange in myocardial tissue.
These allow to measure input and tissue TACs for kinetic
modelling in a similar fashion to what is done with patient
data.

The model used to calculate flow rate in the phantom is
given by equation (1) [12]:

2



Meas. Sci. Technol. 33 (2022) 064002 I X Partarrieu et al

Figure 1. Schematic description of the PET measurement pipeline steps to estimate flow with associated sources of uncertainty for each
one. Steps highlighted in dark blue are the subset examined in this paper.

Figure 2. Schematic (not to scale) of the DCE dynamic flow phantom. Water is run from the container by the peristaltic pump to the
phantom in a closed-loop cycle. Radiotracer is injected through the port labelled dose injector. This is run through the input chamber to a
perforated tube inside the exchange cylinder. Flow inside the perforated tube and the exchange cylinder are constricted with flow valves and
measured with flow meters.

CcylVOI(t) = (1− ISF)×CinputVOI(t− delay)

+ ISF× qin × e−qout×t ∗CinputVOI(t− delay)
(1)

where CcylVOI(t) is the activity concentration in the cylin-
der (Bqml−1) volume of interest (VOI) at time t (min) after
injection, CinputVOI(t− delay) is the activity concentration in
the input chamber VOI (Bqml−1) with a ‘delay’ (min) which
must be assessed, ‘ISF’ is the input signal fraction (equivalent
to the fractional blood volume) to account for signal spillover

and qin and qout are wash in and wash out rates (min−1), which
can be converted to absolute flow values (mlmin−1) through
multiplication by the total volume of the cylinder. ∗ denotes a
convolution.
CcylVOI(t) and CinputVOI(t− delay) can be calculated

from the TACs by multiplying their time point values by the
VOI volume and dividing the result by the exchange cylin-
der (160 ml) and input chamber (15.7 ml) volumes, respect-
ively. With these, we can then solve for the four parameters:
‘delay’, ‘ISF’, qin and qout using a non-linear least squares fit-
ting approach [13].
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Figure 3. Single slice images of (a) a 3D-OSEM reconstruction (b) a BSREM reconstruction, both of the same acquisition which had a
200 mlmin−1 flow rate with 20% flow in the exchange cylinder. The bright, uppermost point is the input chamber and the largest object,
located in the bottom, is the exchange cylinder.

2.2. Experimental acquisition details

The flow phantom was scanned on a digital Discovery MI
PET/CT system (DMI, GE Healthcare, Milwaukee, US) after
injection of a target 500 MBq of [15O]water. Acquisition para-
meters were fixed for each measurement. Three measure-
ments were carried out after each injection, where the flow
through the phantom was increased from 150 mlmin−1 to
250 mlmin−1 in steps of 50 mlmin−1, with a consistent per-
centage of the flow ‘lost’ to tracer exchange, which is later
referred to as “Flow percentage”. Once acquired, two images
were reconstructed using:

• a three dimensional ordered subset expectation maximiza-
tion (3D-OSEM) using point spread function modelling and
time of flight with a 5 mm Gaussian post-filter and a 35 cm
field of view.

• and a block sequential regularized expectation maximiza-
tion (BSREM) with a beta-value of 350.

• Both reconstruction algorithms were run for three iterations
and 16 subsets, using a matrix size of 192 by 192.

Single time-point examples of these reconstructions may
be seen in figure 3. It can be seen that BSREM images are
smoother than OSEM images. The resulting images then had
two volumes of interest defined: one over the input chamber
and one over the exchange cylinder, with the volumes varied
over representative ranges.

3. The effect of input parameters on the perfusion
measurement

3.1. Design of experiments

In order to determine how various factors in the perfu-
sion measurement pipeline contribute to the variability of
CcylVOI(t) and CinputVOI(t− delay) measurements, which

Table 1. List of factors examined during experimentation and their
levels. The ranges selected are representative of clinical values.

Factor Levels

Flow rate (mlmin−1) 150, 200, 250
Flow percentage (%) 20, 40, 60, 80
Input chamber VOI (ml) 1, 2, 3, 4, 5
Exchange cylinder VOI (ml) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Reconstruction algorithm BSREM, OSEM

are the key inputs for the kinetic modelling equation, we
performed a full factorial experiment measuring the flow
phantom. The levels taken by all factors may be found in
table 1.

This design resulted in 1200 VOIs drawn for the input
chamber and exchange cylinder respectively, from which the
TACs were extracted (e.g. figure 4). These were used to obtain
theCcylVOI(t) andCinputVOI(t− delay) concentration curves,
from which in turn we calculated the areas under the curves
(AUC) AUCCcyl and AUCCinput as representative summary stat-
istics. The VOIs were centered on the input and exchange cyl-
inders respectively using an automated algorithm that detec-
ted the two largest areas of activity in the image, and the
volumes taken selected based on clinical VOI data gathered
by the clinicians.

3.2. Sensitivity analysis

In order to determine the sensitivity of AUCCcyl and AUCCinput

to factors in the processing pipeline, the 1200 results of the
full factorial experiment were processed using analysis of vari-
ance (ANOVA), which calculates the sum of squares SSA due
to each factor or factor interaction A [14]. Phantom flow rate,
flow percentage, exchange cylinder VOI, input chamber VOI
and reconstruction type were all varied as per table 1, taking
all possible combinations of the values therein. The sum of
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Figure 4. Input chamber and exchange cylinder time activity curves. Each data point represents the average value within the corresponding
VOI. The error bars are the standard deviation within the VOI, with a half length being equal to σ. It can be seen that the activity
concentration peak for the input chamber is larger than for the exchange cylinder.

Figure 5. Pie charts showing the sensitivity of the input chamber and cylinder concentration curve AUCs to the factors investigated.The
legend is shared, with VOI referring specifically to the respective volume (either input chamber or exchange cylinder). It can be seen that
activity curves are most sensitive to the VOI (74% and 82% respectively), followed by flow rate (21%) for the AUCCinput and flow percent
(11%) for the AUCCcyl . The error accounts for 4% of the sensitivity for both.

squares contributions of these factors and their interactions
were then compared to the total sum of squares SST , in order
to calculate Pearson’s η2 coefficient [15]:

η2A =
SSA
SST

. (2)

This coefficient describes the relative variation in the dataset
and provides an indication of which factors affect the calcu-
lated concentration AUCs the most, with η2 taking larger val-
ues for these. By definition, this should be a combination of the
VOI and the true underlying flow rate for the input chamber,

or the VOI and both the true flow rate and flow percentage for
the exchange cylinder. In a full factorial experiment, values of
η2 sum to one.

3.3. Results of the sensitivity analysis

In figure 5, the η2 values have been converted to percent-
ages. The term ‘error’ encapsulates all interactions between
the factors investigated. From this figure, it is possible to see
that the calculation of AUCCcyl and AUCCinput are both strongly
affected by changes in the VOI over the ranges investigated,
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Figure 6. Bar charts showing the sensitivity of the input chamber and cylinder TAC AUCs to the factors investigated once VOI is
standardised. The legend and y axis label are shared. For the AUCCinput , sensitivity to the flow percent is negligible whereas it is
approximately 80% for the AUCCinput for all investigated volumes. Sensitivity to the flow rate is approximately 95% for the AUCCinput ,
and hovers around 20% for the AUCCcyl . The effect of the reconstruction term is negligible.

which is to be expected given their definitions. Flow rate is
the second most important factor investigated for AUCCinput ,
whereas it is flow percentage for AUCCcyl . As the VOI was an
important factor, we thought it would be valuable to further
investigate if specific VOIs resulted in improved sensitivity of
the concentration value to the flow factors. The results may be
seen in figure 6.

In figure 6, we can see that standardisation of the VOI for
the AUCCinput leads to flow rate becoming the dominant factor,
and the specific volume has a minor effect. For the AUCCcyl ,
the dominant factor becomes the flow percentage, with the
specific volume again having a minor effect, where as the
VOI gets larger sensitivity to the flow percentage reduces by
approximately 6%, with sensitivity to flow rate and error both
increasing.

4. Discussion

In this paper we have outlined the need for an improved
understanding of how cardiac PET measurements are affected
by factors in the measurement pipeline. Using AUCCcyl and
AUCCinput as representative summary statistics, we have shown
that VOI standardisation is important for measurements of the
exchange cylinder and input chamber. In this latter scenario,
flow percentage was the dominant factor, as expected. We also
observed a meaningful contribution from flow rate to the sum
of squares, which increased for larger VOIs. However, this
effect is small and additional data should be gathered before
making claims of significance. The reconstruction algorithm
effect was negligible. This could be due to the fact that the
algorithms were run to result in equivalent voxel sizes, and
that in this case, the BSREM algorithm was run to have sim-
ilar noise and resolution properties as the OSEM algorithm.
Varying algorithm sub-parameters may lead to the reconstruc-
tion’s η2 contribution increasing.

Kinetic flow values of the phantomwere not modelled from
the TACs for this paper, but would be of value in future ana-
lyses as we would expect their sensitivity to reflect those of

the AUCs calculated. Additionally, it should be noted that
although modelling kinetics on a phantom provides valu-
able insight into model appropriateness and sensitivity, the
phantom is highly idealised. In actual patient scans the location
of the ‘input chamber’ and ‘exchange cylinder’ equivalents are
less clearly defined, tissue spill-over effects are present which
can confound the analysis and patient motion results in lower
quality images. Due to these factors, the kinetic model to be
used varies from the one used for the phantom.

The sensitivity analysis here addresses a few initial factors
in the perfusion quantification pipeline. Many other factors
exist, and some may contribute significantly to the outcome.
It is important to methodologically determine which factors
are likely to be important contributors to final measurement
results in order to be able to suggest appropriate measures
for standardisation. Future work will expand upon the ana-
lysis seen here to additional parameters, guided by clinical
concerns.

5. Concluding remarks and future work

This initial work demonstrates the importance of properly
assessing the sensitivity of a imaging pipeline to the factors
being investigated. Using a sensitivity analysis, we have iden-
tified the main contributors to the total sum of squares of
the data and proposed standardisation schemes. We have also
shown that reconstruction effects are negligible for AUC
calculations.

We plan on further propagating this analysis through to the
final flow values as opposed to only analysing the AUC as
well as investigating additional factors in the PET perfusion
pipeline, to see how initial input variations affect the end per-
fusion results, with the end goal of establishing optimal factor
levels for flow measurements.

After that we plan on quantifying the uncertainty due
to each of these factors in the perfusion pipeline using a
Monte Carlo method. The sensitivity analysis carried out here
will guide the choice of input quantities into the uncertainty
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quantification method and help assign distributions to them
based on expert knowledge.

All these steps contribute towards the project’s end goal
of being able to establish traceability of PET perfusion meas-
urements and quantify uncertainties through the traceability
chain, which will enable standardisation across scanners and
centres.
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