25 research outputs found

    Manifolds of magnetic ordered states and excitations in the almost Heisenberg pyrochlore antiferromagnet MgCr2O4

    Get PDF
    In spinels ACr2O4 (A=Mg, Zn), realization of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN = 12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et al. [Pow. Diff. 17, 230 (2002)], while other features depend on sample or cooling protocol. A complex, partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1 = (1/2 1/2 0), k2 = (1 0 1/2 ) appear. The ordered moment reaches 1.94(3) μB/Cr3+ for k1 and 2.08(3) μB/Cr3+ for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1−10] diagonals and a smaller c component.We use inelastic neutron scattering to investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV.We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of clusterlike excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders

    Experimental signatures of emergent quantum electrodynamics in Pr2_2Hf2_2O7_7

    Get PDF
    In a quantum spin liquid, the magnetic moments of the constituent electron spins evade classical long-range order to form an exotic state that is quantum entangled and coherent over macroscopic length scales [1-2]. Such phases offer promising perspectives for device applications in quantum information technologies, and their study can reveal fundamentally novel physics in quantum matter. Quantum spin ice is an appealing proposal of one such state, in which the fundamental ground state properties and excitations are described by an emergent U(1) lattice gauge theory [3-7]. This quantum-coherent regime has quasiparticles that are predicted to behave like magnetic and electric monopoles, along with a gauge boson playing the role of an artificial photon. However, this emergent lattice quantum electrodynamics has proved elusive in experiments. Here we report neutron scattering measurements of the rare-earth pyrochlore magnet Pr2_2Hf2_2O7_7 that provide evidence for a quantum spin ice ground state. We find a quasi-elastic structure factor with pinch points - a signature of a classical spin ice - that are partially suppressed, as expected in the quantum-coherent regime of the lattice field theory at finite temperature. Our result allows an estimate for the speed of light associated with magnetic photon excitations. We also reveal a continuum of inelastic spin excitations, which resemble predictions for the fractionalized, topological excitations of a quantum spin ice. Taken together, these two signatures suggest that the low-energy physics of Pr2_2Hf2_2O7_7 can be described by emergent quantum electrodynamics. If confirmed, the observation of a quantum spin ice ground state would constitute a concrete example of a three-dimensional quantum spin liquid - a topical state of matter which has so far mostly been explored in lower dimensionalities.Comment: 15 pages, 3 figure

    Association of MiR-126 with Soluble Mesothelin-Related Peptides, a Marker for Malignant Mesothelioma

    Get PDF
    BACKGROUND: Improved detection methods for diagnosis of malignant pleural mesothelioma (MPM) are essential for early and reliable detection as well as treatment. Since recent data point to abnormal levels of microRNAs (miRNAs) in tumors, we hypothesized that a profile of deregulated miRNAs may be a marker of MPM and that the levels of specific miRNAs may be used for monitoring its progress. METHODS AND RESULTS: miRNAs isolated from fresh-frozen biopsies of MPM patients were tested for the expression of 88 types of miRNA involved in cancerogenesis. Most of the tested miRNAs were downregulated in the malignant tissues compared with the normal tissues. Of eight significantly downregulated, three miRNAs were assayed in cancerous tissue and adjacent non-cancerous tissue sample pairs collected from 27 formalin-fixed, paraffin-embedded MPM tissues by quantitative RT-PCR. Among the miRNAs tested, only miR-126 significantly remained downregulated in the malignant tissues. Furthermore, the performance of the selected miR-126 as biomarker was evaluated in serum samples of asbestos-exposed subjects and MPM patients and compared with controls. MiR-126 was not affected by asbestos exposure, whereas it was found strongly associated with VEGF serum levels. Levels of miR-126 in serum, and its levels in patients' serum in association with a specific marker of MPM, SMRPs, correlate with subjects at high risk to develop MPM. CONCLUSIONS AND SIGNIFICANCE: We propose miR-126, in association with SMRPs, as a marker for early detection of MPM. The identification of tumor biomarkers used alone or, in particular, in combination could greatly facilitate the surveillance procedure for cohorts of subjects exposed to asbestos

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer

    Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.

    Get PDF
    With the use of a mouse model expressing human Fc-gamma receptors (FcγRs), we demonstrated that antibodies with isotypes equivalent to ipilimumab and tremelimumab mediate intra-tumoral regulatory T (Treg) cell depletion in vivo, increasing the CD8+ to Treg cell ratio and promoting tumor rejection. Antibodies with improved FcγR binding profiles drove superior anti-tumor responses and survival. In patients with advanced melanoma, response to ipilimumab was associated with the CD16a-V158F high affinity polymorphism. Such activity only appeared relevant in the context of inflamed tumors, explaining the modest response rates observed in the clinical setting. Our data suggest that the activity of anti-CTLA-4 in inflamed tumors may be improved through enhancement of FcγR binding, whereas poorly infiltrated tumors will likely require combination approaches

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource
    corecore