297 research outputs found
Diagnosing transit times on the northwestern North Atlantic continental shelf
The circulation in the northwestern North Atlantic Ocean is
highly complex, characterized by the confluence of two major western boundary
current systems and several shelf currents. Here we present the first
comprehensive analysis of transport paths and timescales for the northwestern
North Atlantic shelf, which is useful for estimating ventilation rates,
describing circulation and mixing, characterizing the composition of water
masses with respect to different source regions, and elucidating rates and
patterns of biogeochemical processing, species dispersal, and genetic
connectivity. Our analysis uses dye and age tracers within a high-resolution
circulation model of the region, divided into nine subregions, to diagnose
retention times, transport pathways, and transit times. Retention times are
shortest on the Scotian Shelf ( ∼  3 months), where the inshore and
shelf-break branches of the coastal current system result in high along-shelf
transport to the southwest, and on the Grand Banks ( ∼  3 months). Larger
retention times are simulated in the Gulf of St. Lawrence ( ∼  12 months)
and the Gulf of Maine ( ∼  6 months). Source water analysis shows that
Scotian Shelf water is primarily comprised of waters from the Grand Banks and
Gulf of St. Lawrence, with varying composition across the shelf.
Contributions from the Gulf of St. Lawrence are larger at near-shore
locations, whereas locations near the shelf break have larger contributions
from the Grand Banks and slope waters. Waters from the deep slope have little
connectivity with the shelf, because the shelf-break current inhibits
transport across the shelf break. Grand Banks and Gulf of St. Lawrence waters
are therefore dominant controls on biogeochemical properties, and on setting
and sustaining planktonic communities on the Scotian Shelf.</p
A coupled physical-biological model of the Northern Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability
The Texas-Louisiana shelf in the Northern Gulf of Mexico receives large inputs of nutrients and freshwater from the Mississippi/Atchafalaya River system. The nutrients stimulate high rates of primary production in the river plume, which contributes to the development of a large and recurring hypoxic area in summer, but the mechanistic links between hypoxia and river discharge of freshwater and nutrients are complex as the accumulation and vertical export of organic matter, the establishment and maintenance of vertical stratification, and the microbial degradation of organic matter are controlled by a non-linear interplay of factors. Unraveling these interactions will have to rely on a combination of observations and models. Here we present results from a realistic, 3-dimensional, physical-biological model with focus on a quantification of nutrient-stimulated phytoplankton growth, its variability and the fate of this organic matter. We demonstrate that the model realistically reproduces many features of observed nitrate and phytoplankton dynamics including observed property distributions and rates. We then contrast the environmental factors and phytoplankton source and sink terms characteristic of three model subregions that represent an ecological gradient from eutrophic to oligotrophic conditions. We analyze specifically the reasons behind the counterintuitive observation that primary production in the light-limited plume region near the Mississippi River delta is positively correlated with river nutrient input, and find that, while primary production and phytoplankton biomass are positively correlated with nutrient load, phytoplankton growth rate is not. This suggests that accumulation of biomass in this region is not primarily controlled bottom up by nutrient-stimulation, but top down by systematic differences in the loss processes
Seasonal and interannual variability of physical and biological dynamics at the shelfbreak front of the Middle Atlantic Bight: nutrient supply mechanisms
A high-resolution, 3-dimensional coupled biophysical model is used to simulate ocean circulation and ecosystem variations at the shelfbreak front of the Middle Atlantic Bight (MAB). Favorable comparisons between satellite observations and model hindcast solutions from January 2004 to November 2007 indicate the model has intrinsic skills in resolving fundamental physical and biological dynamics at the MAB shelfbreak. Seasonal and interannual variability of ocean physical and biological states and their driving mechanisms are further analyzed. The domain-wide upper water column nutrient content is found to peak in late winter-early spring. Phytoplankton spring bloom starts 1–2 months later, followed by zooplankton bloom in early summer. Our analysis shows the variability of shelfbreak nutrient supply is controlled by local mixing that deepens the mixed layer and injects deep ocean nutrients into the upper water column and alongshore nutrient transport by the shelfbreak jet and associated currents. Nutrient vertical advection associated with the shelfbreak bottom boundary layer convergence is another significant contributor. Spring mean nutrient budget diagnostics along the Nantucket transect are compared between nutrient rich 2004 and nutrient poor 2007. Physical advection and diffusion play the major role in determining strong interannual variations in shelfbreak nutrient content. The biological (source minus sink) term is very similar between these two years
Optimizing Models of the North Atlantic Spring Bloom Using Physical, Chemical and Bio-Optical Observations from a Lagrangian Float
The North Atlantic spring bloom is one of the main events that lead to carbon export to the deep ocean and drive oceanic uptake of CO(2) from the atmosphere. Here we use a suite of physical, bio-optical and chemical measurements made during the 2008 spring bloom to optimize and compare three different models of biological carbon export. The observations are from a Lagrangian float that operated south of Iceland from early April to late June, and were calibrated with ship-based measurements. The simplest model is representative of typical NPZD models used for the North Atlantic, while the most complex model explicitly includes diatoms and the formation of fast sinking diatom aggregates and cysts under silicate limitation. We carried out a variational optimization and error analysis for the biological parameters of all three models, and compared their ability to replicate the observations. The observations were sufficient to constrain most phytoplankton-related model parameters to accuracies of better than 15 %. However, the lack of zooplankton observations leads to large uncertainties in model parameters for grazing. The simulated vertical carbon flux at 100 m depth is similar between models and agrees well with available observations, but at 600 m the simulated flux is larger by a factor of 2.5 to 4.5 for the model with diatom aggregation. While none of the models can be formally rejected based on their misfit with the available observations, the model that includes export by diatom aggregation has a statistically significant better fit to the observations and more accurately represents the mechanisms and timing of carbon export based on observations not included in the optimization. Thus models that accurately simulate the upper 100 m do not necessarily accurately simulate export to deeper depths
A Model Archive for a Coupled Hydrodynamic-Sediment Transport-Biogeochemistry Model for the Northern Gulf of Mexico, USA
Spatial Information: 27.4-30.3°N, -94.6 - -87.8 °W; Louisiana continental shelf, Northern Gulf of Mexico, US
The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhone River, France: a numerical modeling study
Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhone subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhone Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water column. Additionally, entrainment of POM into the water column during resuspension events, and the associated increase in remineralization there, also increased oxygen consumption in the region of the water column below the pycnocline. During these resuspension events, modeled rates of oxygen consumption increased by factors of up to similar to 2 and similar to 8 in the seabed and below the pycnocline, respectively. When averaged over 2 months, the intermittent cycles of erosion and deposition led to a similar to 16% increase of oxygen consumption in the seabed, as well as a larger increase of similar to 140% below the pycnocline. These results imply that observations collected during quiescent periods, and biogeochemical models that neglect resuspension or use typical parameterizations for resuspension, may underestimate net oxygen consumption at sites like the Rhone Delta. Local resuspension likely has the most pronounced effect on oxygen dynamics at study sites with a high oxygen concentration in bottom waters, only a thin seabed oxic layer, and abundant labile organic matter
A Model Archive for a Coupled Hydrodynamic-Sediment Transport-Biogeochemistry Model for the Rhône River Sub-aqueous Delta, France
This dataset includes model input, code, and output used in the publication Moriarty et al. (2017, Biogeosciences), which used a coupled hydrodynamic-sediment transport-biogeochemical model to investigate the roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics on the Rhône River sub-aqueous delta, France. Model development for this project focused on coupling the sediment transport and water-column biogeochemistry modules in the Regional Ocean Modeling System (ROMS) by incorporating a seabed biogeochemistry module into the ROMS framework. As described in Moriarty et al. (2017, Biogeosciences), the coupled model can account for diffusion of nutrients across the seabed-water-column interface; storage of particulate organic matter and dissolved nutrients in the seabed; biogeochemical reactions in the seabed; and resuspension and redistribution of the organic matter and nutrients
- …